Activation of peroxymonosulfate using heterogeneous Fe-doped carbon-based catalyst to generate singlet oxygen for the degradation of sulfamethoxazole

被引:10
|
作者
Qin, Bo [1 ]
Wang, Bin [1 ,2 ]
Li, Jiang [4 ]
Wang, Tao [4 ]
Xu, Xiaoyi [3 ]
Hou, Li 'an [2 ]
机构
[1] Guizhou Univ, Coll Civil Engn, Guizhou Prov Key Lab Rock & Soil Mech & Engn Safet, Guiyang 550025, Peoples R China
[2] Zhejiang Univ, Dept Chem & Biol Engn, Hangzhou 310027, Peoples R China
[3] Suzhou Univ Sci & Technol, Sch Environm Sci & Engn, Suzhou 215009, Peoples R China
[4] Guizhou Univ, Coll Resources & Environm Engn, Guiyang 550025, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon-based catalyst; Fe doping; Antibiotics; Peroxymonosulfate; Non-radicals; PERSONAL CARE PRODUCTS; ONE-STEP SYNTHESIS; ANTIBIOTICS; OXIDATION; BIOCHAR; WATER; PERSULFATE; RADICALS; NITROGEN; REMOVAL;
D O I
10.1016/j.seppur.2024.126905
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Non -radical catalytic oxidation processes can eliminate refractory pollutants from wastewater containing complex substrates such as dissolved organic matter, but the production of selective non -radicals is challenging during the activation of peroxymonosulfate (PMS). Herein, a novel magnetic carbon -based catalyst (Fe 3 O 4 @CD- 8, where 8 represents an annealing temperature of 800 degree celsius) with N and Fe species as catalytic active sites was fabricated to remediate sulfamethoxazole (SMX)-containing water. It showed excellent SMX removal efficiency and facilitated singlet oxygen ( 1 O 2 ) production. The characterization results revealed that Fe 3 O 4 @CD-8 had a microscopically hierarchical pore structure and an overall core - shell-like structure. Due to its large specific surface area, N -containing species, and Fe nanoparticles, 0.1 g/L Fe 3 O 4 @CD-8 removed almost 100% SMX (24 min) and achieved a 44.1% mineralization (40 min) efficiency in the presence of 0.5 mM PMS. This catalytic system also maintained its removal performance in the presence of inorganic anions and humic acids and over a wide pH range of 3 - 11, showing good tolerance to various environmental factors. 1 O 2 was confirmed to be the predominant active species for SMX degradation using the Fe 3 O 4 @CD-8/PMS system. Density functional theory (DFT) calculations, intermediate monitoring, and toxicity evaluation demonstrated that SMX was transformed into low -toxicity molecules and completely mineralized into CO 2 and H 2 O. The addition of Fe nanoparticles enhanced PMS adsorption and facilitated the Fe(III)/Fe(II) redox cycle to accelerate the activation of PMS. This study provides new insights and strategies for the controlled production of non -radicals for remediating antibiotic -containing wastewater.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Enhanced sulfamethoxazole degradation using an efficient Co-doped MnO2 activator for peroxymonosulfate activation
    Wang, Chao
    Xu, Su
    Liao, WenChao
    Wang, TsingHai
    DESALINATION AND WATER TREATMENT, 2024, 317
  • [42] Enhanced activation of peroxymonosulfate using ternary MOFs-derived MnCoFeO for sulfamethoxazole degradation: Role of oxygen vacancies
    Chen, Yanling
    Bai, Xue
    Ji, Yetong
    Chen, Dandan
    JOURNAL OF HAZARDOUS MATERIALS, 2023, 441
  • [43] Co/N co-doped porous carbon as a catalyst for the degradation of RhB by efficient activation of peroxymonosulfate
    Hongxia Yu
    Dan Ding
    Shuailing Zhao
    Muhammad Faheem
    Weijie Mao
    Li Yang
    Liwei Chen
    Tianming Cai
    Environmental Science and Pollution Research, 2023, 30 : 10969 - 10981
  • [44] Co/N co-doped porous carbon as a catalyst for the degradation of RhB by efficient activation of peroxymonosulfate
    Yu, Hongxia
    Ding, Dan
    Zhao, Shuailing
    Faheem, Muhammad
    Mao, Weijie
    Yang, Li
    Chen, Liwei
    Cai, Tianming
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (04) : 10969 - 10981
  • [45] Role of superoxide radical and singlet oxygen in peroxymonosulfate activation by iron-doped bone char for efficient acetaminophen degradation
    Zeng, Yifeng
    Wang, Fan
    He, Dongqin
    Sun, Jianqiang
    Li, Jun
    Luo, Hongwei
    Pan, Xiangliang
    CHEMICAL ENGINEERING JOURNAL, 2023, 459
  • [46] Efficient degradation of emerging organic pollutants via activation of peroxymonosulfate over Fe-N co-doped carbon materials: Singlet oxygen and electron-transfer mechanisms
    Tang, Tian
    Li, Yuqiong
    Di, Xixi
    Shi, Yixuan
    Liu, Dong
    Wang, Wei
    Liu, Zhifeng
    Ji, Xiaohui
    Yu, Xiaohu
    Shao, Xianzhao
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (06):
  • [47] Activation persulfate for efficient tetrabromobisphenol A degradation via carbon-based materials: Synergistic mechanism of doped N and Fe
    Zhang, Zhengfang
    Liu, Yang
    Zhang, Ying
    Li, Ruohan
    Guan, Yuntao
    JOURNAL OF HAZARDOUS MATERIALS, 2023, 455
  • [48] Degradation of sulfamethoxazole using peroxymonosulfate activated by cobalt embedded into N, O co-doped carbon nanotubes
    Wang, Shizong
    Wang, Jianlong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 277
  • [49] Efficient degradation of tetracycline via N-doped carbon derived from discarded PET plastics by boosting peroxymonosulfate activation and singlet oxygen generation
    Wang, Kefu
    Guo, Changyan
    Li, Jiang
    Wang, Yubin
    Xing, Yage
    Li, Peizhi
    Wang, Ziyi
    Wang, Jide
    CHEMICAL ENGINEERING JOURNAL, 2025, 507
  • [50] Intensive singlet oxygen photogeneration and photocatalytic activity of Sn, Fe-doped ZnO-based composites
    Khomutinnikova, L. L.
    Evstropiev, S. K.
    Meshkovskii, I. K.
    Moskalenko, I. V.
    Bagrov, I. V.
    Skorb, E. V.
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2025, 462