A Karhunen-Loève theorem for random flows in Hilbert spaces

被引:0
|
作者
Santoro, Leonardo, V [1 ]
Waghmare, Kartik G. [1 ]
Panaretos, Victor M. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Math, Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
Mercer's theorem; functional principal components; Hilbertian functional data; random series expansion;
D O I
10.1214/24-ECP597
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a generalisation of Mercer's theorem to operator-valued kernels in infinite dimensional Hilbert spaces. We then apply our result to prove a Karhunen-Lo & egrave;ve theorem, valid for mean-square continuous random functions valued in a separable Hilbert space. That is, we establish an orthogonal series expansion with uncorrelated coefficients for second-order random flows in a Hilbert space, that holds in meansquare uniformly over time.
引用
收藏
页数:12
相关论文
共 50 条