On Enforcing Better Conditioned Meta-Learning for Rapid Few-Shot Adaptation

被引:0
|
作者
Hiller, Markus [1 ]
Harandi, Mehrtash [2 ]
Drummond, Tom [1 ]
机构
[1] Univ Melbourne, Sch Comp & Informat Syst, Parkville, Australia
[2] Monash Univ, Dept Elect & Comp Syst Engn, Clayton, Australia
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Inspired by the concept of preconditioning, we propose a novel method to increase adaptation speed for gradient-based meta-learning methods without incurring extra parameters. We demonstrate that recasting the optimisation problem to a non-linear least-squares formulation provides a principled way to actively enforce a well-conditioned parameter space for meta-learning models based on the concepts of the condition number and local curvature. Our comprehensive evaluations show that the proposed method significantly outperforms its unconstrained counterpart especially during initial adaptation steps, while achieving comparable or better overall results on several few-shot classification tasks - creating the possibility of dynamically choosing the number of adaptation steps at inference time.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] PERSONALIZED FACE AUTHENTICATION BASED ON FEW-SHOT META-LEARNING
    Shin, Chaehun
    Lee, Jangho
    Na, Byunggook
    Yoon, Sungroh
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3897 - 3901
  • [32] Prototype Bayesian Meta-Learning for Few-Shot Image Classification
    Fu, Meijun
    Wang, Xiaomin
    Wang, Jun
    Yi, Zhang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 15
  • [33] MetaDelta: A Meta-Learning System for Few-shot Image Classification
    Chen, Yudong
    Guan, Chaoyu
    Wei, Zhikun
    Wang, Xin
    Zhu, Wenwu
    AAAI WORKSHOP ON META-LEARNING AND METADL CHALLENGE, VOL 140, 2021, 140 : 17 - 28
  • [34] Few-Shot Classification Based on Sparse Dictionary Meta-Learning
    Jiang, Zuo
    Wang, Yuan
    Tang, Yi
    MATHEMATICS, 2024, 12 (19)
  • [35] MetaMedSeg: Volumetric Meta-learning for Few-Shot Organ Segmentation
    Farshad, Azade
    Makarevich, Anastasia
    Belagiannis, Vasileios
    Navab, Nassir
    DOMAIN ADAPTATION AND REPRESENTATION TRANSFER (DART 2022), 2022, 13542 : 45 - 55
  • [36] A concise review of recent few-shot meta-learning methods
    Li, Xiaoxu
    Sun, Zhuo
    Xue, Jing-Hao
    Ma, Zhanyu
    NEUROCOMPUTING, 2021, 456 : 463 - 468
  • [37] Weakly Supervised Few-Shot Segmentation via Meta-Learning
    Gama, Pedro H. T.
    Oliveira, Hugo
    Marcato Jr, Jose
    dos Santos, Jefersson A.
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 1784 - 1797
  • [38] Few-shot and meta-learning methods for image understanding: a survey
    He, Kai
    Pu, Nan
    Lao, Mingrui
    Lew, Michael S. S.
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2023, 12 (02)
  • [39] Few-shot time series forecasting in a meta-learning framework
    Ma P.
    Ni Z.
    Ma, Ping (1533321767@qq.com), 1600, IOS Press BV (46): : 8903 - 8916
  • [40] Meta-Learning for Multi-Label Few-Shot Classification
    Simon, Christian
    Koniusz, Piotr
    Harandi, Mehrtash
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 346 - 355