Optical performance of a solar dish concentrator formed by the same size mirror located on parabolic frame

被引:0
|
作者
Yan, Jian [1 ]
Peng, YouDuo [1 ]
Xie, XinYi [1 ]
Zhou, Wei [1 ]
机构
[1] Hunan Univ Sci & Technol, Coll Mech Engn, Xiangtan 411201, Hunan, Peoples R China
关键词
Solar dish concentrator; Mirror surface; Flux distribution; Optical performance; UNIFORM FLUX DISTRIBUTION; CAVITY RECEIVER; OPTIMIZATION; COLLECTORS; ABSORBERS; SYSTEMS;
D O I
10.1016/j.solmat.2024.113042
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Solar dish concentrator with low cost and meeting the flux distribution is always pursued for the efficient utilization of concentrated solar energy. This paper investigates the optical performance of a solar dish concentrator formed by using a number of identical square mirror units arranged on a parabolic surface frame. The manufacturing of the mirror surface of this concentrator requires only one kind of mold, which has the significant advantage of low-cost manufacturing. Three common types of mirror units including the parabolic mirror (focal length fm), spherical mirror (radius Rm) and plane mirror are considered. The influence of key geometric parameters including the mirror width d (250-750 mm) and dimensionless parameters such as f1/D, fm/f1 and Rm/ f1 (f1 is the focal length of parabolic frame) on its optical performance indexes such as the focused spot size (i.e., intercept width w), average local concentrator ratio (LCR), peak LCR and flux uniformity is analyzed using raytracing method, and the correctness of optical model and concentrator optical function is verified by outdoor concentrating experiments. The results show that the concentrator composed of parabolic or spherical mirrors can easily obtain a small circular focusing spot with high LCR and the intercept width can be easily controlled within 200 mm, the peak LCR can reach 34457 (average LCR is 12898), and average LCR reaches 14794 (peak LCR is 29497) at the smallest spot with w = 38.4 mm, which can be a low-cost alternative to parabolic dish concentrator. The concentrator with plane mirrors are easier to obtain square focusing spots with excellent flux uniformity, w can be controlled from 180 to 380 mm and uniform LCR is between 100 and 1400, which is very suitable for concentrating photovoltaic field.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Radiation performance of dish solar concentrator/cavity receiver systems
    Shuai, Yong
    Xia, Xin-Lin
    Tan, He-Ping
    SOLAR ENERGY, 2008, 82 (01) : 13 - 21
  • [42] Performance analysis of solar concentrator dish by various reflector and absorbent
    Lakshmanan, T.
    Prasad, G. Leela
    Ghosh, Akashdeep
    Kumar, Abhik
    Vittal, H. K. Aniketh
    3RD INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING (ICAME 2020), PTS 1-6, 2020, 912
  • [43] Prediction of focal image for solar parabolic dish concentrator with square facets—an analytical model
    Arjun Singh Kopalakrishnaswami
    Reyhaneh Loni
    Gholamhassan Najafi
    Sendhil Kumar Natarajan
    Environmental Science and Pollution Research, 2023, 30 : 20065 - 20076
  • [44] Conceptual design of parabolic dish solar concentrator to generate high temperature thermal energy
    Clemente, Wuilber
    Espinoza, Ciro
    Martinez, Carlos
    FUENTES EL REVENTON ENERGETICO, 2021, 19 (02): : 83 - 94
  • [45] Study on Concentrating Characteristics of a Solar Parabolic Dish Concentrator within High Radiation Flux
    Mao, Qianjun
    Zhang, Liya
    Wu, Hongjun
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2015, 2015
  • [46] Performance of solar parabolic dish thermoelectric generator with PCM
    Muthu, G.
    Thulasi, S.
    Dhinakaran, V
    Mothilal, T.
    MATERIALS TODAY-PROCEEDINGS, 2021, 37 : 929 - 933
  • [47] Optical Design of a Solar Dish Concentrator Based on Triangular Membrane Facets
    Ma, Hongcai
    Jin, Guang
    Zhong, Xing
    Xu, Kai
    Li, Yanjie
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2012, 2012
  • [48] Numerical simulation on the optical and thermal performance of a modified integrated compound parabolic solar concentrator
    Chen, Lin
    Chen, Jia-Xiang
    Zhang, Xin-Rong
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2015, 39 (13) : 1843 - 1857
  • [49] Optical performance of a hybrid compound parabolic concentrator and parabolic trough concentrator system for dual concentration
    Indira, Sridhar Sripadmanabhan
    Vaithilingam, Chockalingam Aravind
    Sivasubramanian, Ramsundar
    Chong, Kok-Keong
    Saidur, R.
    Narasingamurthi, Kulasekharan
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2021, 47 (47)
  • [50] Optical performance of a solar dish concentrator/receiver system: Influence of geometrical and surface properties of cavity receiver
    Li, Sha
    Xu, Guoqiang
    Luo, Xiang
    Quan, Yongkai
    Ge, Yunting
    ENERGY, 2016, 113 : 95 - 107