Multimodal Proxy-Free Face Anti-Spoofing Exploiting Local Patch Features

被引:0
|
作者
Yu, Xiangyu [1 ]
Huang, Xinghua [1 ]
Ye, Xiaohui [1 ]
Liu, Beibei [1 ]
Hua, Guang [2 ]
机构
[1] South China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510641, Peoples R China
[2] Singapore Inst Technol SIT, Infocomm Technol ICT Cluster, Singapore 138683, Singapore
关键词
Faces; Face recognition; Feature extraction; Protocols; Task analysis; Training; Printing; Face anti-spoofing; local spoof features; proxy-free pairwise similarity learning;
D O I
10.1109/LSP.2024.3418710
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Face anti-spoofing (FAS) is vital to ensure the security of the face recognition systems, for which the essential task is to capture the unique spoof face features. Most of the existing methods extract spoof features from the whole faces, overlooking clues in local face patches. Meanwhile, researchers usually use intermediate parameters as a proxy in face classification, but this requires the design of additional loss functions. To solve these problems, we propose a multimodal proxy-free FAS model which uses contrastive language image pre-training (CLIP) as the backbone. Specifically, we use patches cropped from the original face to augment the data, forcing the network to learn local spoof features, such as the edges of printing attacks. At the same time, we introduce dynamic central difference convolutional (DCDC) adapter to extract fine-grained features in patches. Furthermore, we propose to adopt a proxy-free pairwise similarity learning (PSL) loss to achieve the goal that the maximum intra-class distance is smaller than the minimum inter-class distance. Experiments on several benchmark datasets show that the proposed method achieves state-of-the-art performance.
引用
收藏
页码:1695 / 1699
页数:5
相关论文
共 50 条
  • [41] Learning Meta Pattern for Face Anti-Spoofing
    Cai, Rizhao
    Li, Zhi
    Wan, Renjie
    Li, Haoliang
    Hu, Yongjian
    Kot, Alex C.
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2022, 17 : 1201 - 1213
  • [42] Face Anti-Spoofing with Multifeature Videolet Aggregation
    Siddiqui, Talha Ahmad
    Bharadwaj, Samarth
    Dhamecha, Tejas I.
    Agarwal, Akshay
    Vatsa, Mayank
    Singh, Richa
    Ratha, Nalini
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 1035 - 1040
  • [43] Face Anti-spoofing: A Comparative Review and Prospects
    Kim W.
    IEIE Transactions on Smart Processing and Computing, 2021, 10 (06): : 455 - 463
  • [44] Algorithm of face anti-spoofing based on pseudo-negative features generation
    Ma, Yukun
    Lyu, Chengzhen
    Li, Liangliang
    Wei, Yajun
    Xu, Yaowen
    FRONTIERS IN NEUROSCIENCE, 2024, 18
  • [45] Transfer learning for face anti-spoofing detection
    Verissimo, Sandoval
    Gadelha, Guilherme
    Batista, Leonardo
    Janduy, Joao
    Falcao, Fabio
    IEEE LATIN AMERICA TRANSACTIONS, 2023, 21 (04) : 530 - 536
  • [46] Unsupervised Domain Adaptation for Face Anti-Spoofing
    Li, Haoliang
    Li, Wen
    Cao, Hong
    Wang, Shiqi
    Huang, Feiyue
    Kot, Alex C.
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2018, 13 (07) : 1794 - 1809
  • [47] Robust face anti-spoofing with depth information
    Wang, Yan
    Nian, Fudong
    Li, Teng
    Meng, Zhijun
    Wang, Kongqiao
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2017, 49 : 332 - 337
  • [48] Disentangled Representation based Face Anti-Spoofing
    Liu, Zhao
    Feng, Zunlei
    Zou, Zeyu
    Zhang, Rong
    Song, Mingli
    Shen, Jianping
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 2017 - 2024
  • [49] Diffusing the Liveness Cues for Face Anti-spoofing
    Li, Sheng
    Zhu, Xun
    Feng, Guorui
    Zhang, Xinpeng
    Qian, Zhenxing
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 1636 - 1644
  • [50] Face anti-spoofing via jointly modeling local texture and constructed depth
    Li, Lei
    Yao, Zhihao
    Gao, Shanshan
    Han, Huijian
    Xia, Zhaoqiang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133