Revisiting Deep Ensemble for Out-of-Distribution Detection: A Loss Landscape Perspective

被引:0
|
作者
Fang, Kun [1 ]
Tao, Qinghua [2 ]
Huang, Xiaolin [1 ]
Yang, Jie [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai, Peoples R China
[2] Katholieke Univ Leuven, ESAT STADIUS, Heverlee, Belgium
基金
中国国家自然科学基金;
关键词
Out-of-distribution detection; Loss landscape; Mode; Ensemble;
D O I
10.1007/s11263-024-02156-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing Out-of-Distribution (OoD) detection methods address to detect OoD samples from In-Distribution (InD) data mainly by exploring differences in features, logits and gradients in Deep Neural Networks (DNNs). We in this work propose a new perspective upon loss landscape and mode ensemble to investigate OoD detection. In the optimization of DNNs, there exist many local optima in the parameter space, or namely modes. Interestingly, we observe that these independent modes, which all reach low-loss regions with InD data (training and test data), yet yield significantly different loss landscapes with OoD data. Such an observation provides a novel view to investigate the OoD detection from the loss landscape, and further suggests significantly fluctuating OoD detection performance across these modes. For instance, FPR values of the RankFeat (Song et al. in Advances in Neural Information Processing Systems 35:17885-17898, 2022) method can range from 46.58% to 84.70% among 5 modes, showing uncertain detection performance evaluations across independent modes. Motivated by such diversities on OoD loss landscape across modes, we revisit the deep ensemble method for OoD detection through mode ensemble, leading to improved performance and benefiting the OoD detector with reduced variances. Extensive experiments covering varied OoD detectors and network structures illustrate high variances across modes and validate the superiority of mode ensemble in boosting OoD detection. We hope this work could attract attention in the view of independent modes in the loss landscape of OoD data and more reliable evaluations on OoD detectors.
引用
收藏
页码:6107 / 6126
页数:20
相关论文
共 50 条
  • [31] Decoupling MaxLogit for Out-of-Distribution Detection
    Zhang, Zihan
    Xiang, Xiang
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 3388 - 3397
  • [32] Robust Cough Detection With Out-of-Distribution Detection
    Chen, Yuhan
    Attri, Pankaj
    Barahona, Jeffrey
    Hernandez, Michelle L.
    Carpenter, Delesha
    Bozkurt, Alper
    Lobaton, Edgar
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (07) : 3210 - 3221
  • [33] Exploring the Limits of Out-of-Distribution Detection
    Fort, Stanislav
    Ren, Jie
    Lakshminarayanan, Balaji
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [34] On Risk Assessment for Out-of-Distribution Detection
    Vasiliuk, Anton
    IEEE ACCESS, 2025, 13 : 18546 - 18568
  • [35] Semantic enhanced for out-of-distribution detection
    Jiang, Weijie
    Yu, Yuanlong
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [36] Unsupervised evaluation for out-of-distribution detection
    Zhang, Yuhang
    Hu, Jiani
    Wen, Dongchao
    Deng, Weihong
    PATTERN RECOGNITION, 2025, 160
  • [37] Likelihood Ratios for Out-of-Distribution Detection
    Ren, Jie
    Liu, Peter J.
    Fertig, Emily
    Snoek, Jasper
    Poplin, Ryan
    DePristo, Mark A.
    Dillon, Joshua V.
    Lakshminarayanan, Balaji
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [38] Generalized Out-of-Distribution Detection: A Survey
    Yang, Jingkang
    Zhou, Kaiyang
    Li, Yixuan
    Liu, Ziwei
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (12) : 5635 - 5662
  • [39] Semantically Coherent Out-of-Distribution Detection
    Yang, Jingkang
    Wang, Haoqi
    Feng, Litong
    Yan, Xiaopeng
    Zheng, Huabin
    Zhang, Wayne
    Liub, Ziwei
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8281 - 8289
  • [40] Understanding Out-of-distribution:A Perspective of Data Dynamics
    Adila, Dyah
    Kang, Dongyeop
    WORKSHOP AT NEURIPS 2021, VOL 163, 2021, 163 : 1 - 8