A novel ensemble learning framework based on a genetic algorithm for the classification of pneumonia

被引:7
|
作者
Kaya, Mahir [1 ]
Cetin-Kaya, Yasemin [1 ]
机构
[1] Tokat Gaziosmanpasa Univ, Fac Engn & Architecture, Dept Comp Engn, Tokat, Turkiye
关键词
Pneumonia; Deep learning; Ensemble model; Genetic algorithm; Computer-aided diagnostics; CONVOLUTIONAL NEURAL-NETWORKS; DISEASES;
D O I
10.1016/j.engappai.2024.108494
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pneumonia is a disease that can be detected by the opacity changes in chest X-rays and can lead to fatal consequences. Medical image analysis has several challenges, such as limited labeled datasets, imbalanced class distribution, image noise, and overfitting, so individual Convolutional Neural Networks (CNNs) are insufficient to detect pneumonia accurately. Although ensemble CNN models have been used in previous studies, the literature lacks guidance on identifying the optimal CNN models and weight ratio to combine them. In this study, we propose a novel ensemble CNN framework to accurately detect pneumonia, with optimum weights set by a Genetic Algorithm (GA). Firstly, a noise outside the lung was removed, and the model performance was enhanced by performing lung segmentation on Chest X-ray. The performances of several CNN models were analyzed by hyperparameter optimization. The framework combines the three models that give the best accuracy and the two models that provide the lowest false-negative value with the ensemble method in the ratio of the most appropriate weights. The proposed framework provided the best performance on the public test dataset with an accuracy of 97.23% and an F1-score of 97.45% compared to state-of-the-art methods. The study's main contributions are determining suitable models and their optimal weights of the ensemble method based on the GA. The proposed framework enables a rapid and effective diagnostic process, less costly healthcare services, and more efficient use of resources. The demo-link is https://www.youtube.com/watch?v=KZ50K3HL70U.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] A Genetic Algorithm Based Clustering Ensemble Approach to Learning Relational Databases
    Alfred, Rayner
    Chiye, Gabriel Jong
    Obit, Joe Henry
    Hijazi, Mohd Hanafi Ahmad
    Chin, Kim On
    Lau, HuiKeng
    ADVANCED SCIENCE LETTERS, 2015, 21 (10) : 3313 - 3317
  • [32] A Reliable Ensemble Classification Algorithm by Genetic Neural Network based on Multiple Regression
    Dong, Xishan
    Sun, Meili
    Zhang, Ting
    Liu, Qiaolian
    Jia, Weikuan
    IAENG International Journal of Computer Science, 2023, 50 (04)
  • [33] An intelligent diabetes classification and perception framework based on ensemble and deep learning method
    Khan, Qazi Waqas
    Iqbal, Khalid
    Ahmad, Rashid
    Rizwan, Atif
    Khan, Anam Nawaz
    Kim, DoHyeun
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [34] SELF: a stacked-based ensemble learning framework for breast cancer classification
    Jakhar, Amit Kumar
    Gupta, Aman
    Singh, Mrityunjay
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (03) : 1341 - 1356
  • [35] Deep ensemble transfer learning-based framework for mammographic image classification
    Parita Oza
    Paawan Sharma
    Samir Patel
    The Journal of Supercomputing, 2023, 79 : 8048 - 8069
  • [36] Design ensemble deep learning model for pneumonia disease classification
    El Asnaoui, Khalid
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2021, 10 (01) : 55 - 68
  • [37] Deep ensemble transfer learning-based framework for mammographic image classification
    Oza, Parita
    Sharma, Paawan
    Patel, Samir
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (07): : 8048 - 8069
  • [38] Design ensemble deep learning model for pneumonia disease classification
    Khalid El Asnaoui
    International Journal of Multimedia Information Retrieval, 2021, 10 : 55 - 68
  • [39] VEGAS: A Variable Length-Based Genetic Algorithm for Ensemble Selection in Deep Ensemble Learning
    Han, Kate
    Tien Pham
    Trung Hieu Vu
    Truong Dang
    McCall, John
    Tien Thanh Nguyen
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2021, 2021, 12672 : 168 - 180
  • [40] A Framework of Multiple Kernel Ensemble Learning for Hyperspectral Classification
    Qi, Chengming
    Zhou, ZhangBing
    Hu, Lishuan
    Wang, Qun
    2016 INT IEEE CONFERENCES ON UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING AND COMMUNICATIONS, CLOUD AND BIG DATA COMPUTING, INTERNET OF PEOPLE, AND SMART WORLD CONGRESS (UIC/ATC/SCALCOM/CBDCOM/IOP/SMARTWORLD), 2016, : 456 - 460