Lifting in Support of Privacy-Preserving Probabilistic Inference

被引:2
|
作者
Gehrke, Marcel [1 ]
Liebenow, Johannes [2 ]
Mohammadi, Esfandiar [2 ]
Braun, Tanya [3 ]
机构
[1] Univ Hamburg, Hamburg, Germany
[2] Univ Lubeck, Lubeck, Germany
[3] Univ Munster, Munster, Germany
来源
KUNSTLICHE INTELLIGENZ | 2024年 / 38卷 / 03期
关键词
ACHIEVING K-ANONYMITY; LOGIC; MODEL;
D O I
10.1007/s13218-024-00851-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Privacy-preserving inference aims to avoid revealing identifying information about individuals during inference. Lifted probabilistic inference works with groups of indistinguishable individuals, which has the potential to prevent tracing back a query result to a particular individual in a group. Therefore, we investigate how lifting, by providing anonymity, can help preserve privacy in probabilistic inference. Specifically, we show correspondences between k-anonymity and lifting and present s-symmetry as an analogue as well as PAULI, a privacy-preserving inference algorithm that ensures s-symmetry during query answering.
引用
收藏
页码:225 / 241
页数:17
相关论文
共 50 条
  • [31] THE-X: Privacy-Preserving Transformer Inference with Homomorphic Encryption
    Chen, Tianyu
    Bao, Hangbo
    Huang, Shaohan
    Dong, Li
    Jiao, Binxing
    Jiang, Daxin
    Zhou, Haoyi
    Li, Jianxin
    Wei, Furu
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), 2022, : 3510 - 3520
  • [32] CryptoSPN: Privacy-Preserving Sum-Product Network Inference
    Treiber, Amos
    Molina, Alejandro
    Weinert, Christian
    Schneider, Thomas
    Kersting, Kristian
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 1946 - 1953
  • [33] PPCNN: An efficient privacy-preserving CNN training and inference framework
    Zhao, Fan
    Li, Zhi
    Wang, Hao
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (12) : 10988 - 11018
  • [34] PPTIF: Privacy-Preserving Transformer Inference Framework for Language Translation
    Liu, Yanxin
    Su, Qianqian
    IEEE ACCESS, 2024, 12 : 48881 - 48897
  • [35] A Statistical Inference Attack on Privacy-Preserving Biometric Identification Scheme
    Kim, Dongmin
    Kim, Kee Sung
    IEEE ACCESS, 2021, 9 : 37378 - 37385
  • [36] Adversarial Privacy-Preserving Graph Embedding Against Inference Attack
    Li, Kaiyang
    Luo, Guangchun
    Ye, Yang
    Li, Wei
    Ji, Shihao
    Cai, Zhipeng
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (08) : 6904 - 6915
  • [37] Privacy-Preserving Probabilistic Data Encoding for IoT Data Analysis
    Zaman, Zakia
    Xue, Wanli
    Gauravaram, Praveen
    Hu, Wen
    Jiang, Jiaojiao
    Jha, Sanjay K.
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 9173 - 9187
  • [38] DPMF: Decentralized Probabilistic Matrix Factorization for Privacy-Preserving Recommendation
    Yang, Xu
    Luo, Yuchuan
    Fu, Shaojing
    Xu, Ming
    Chen, Yingwen
    APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [39] Privacy-Preserving Probabilistic Voltage Forecasting in Local Energy Communities
    Toubeau, Jean-Francois
    Teng, Fei
    Morstyn, Thomas
    Von Krannichfeldt, Leandro
    Wang, Yi
    IEEE TRANSACTIONS ON SMART GRID, 2023, 14 (01) : 798 - 809
  • [40] PPCD: Privacy-preserving clinical decision with cloud support
    Ma, Hui
    Guo, Xuyang
    Ping, Yuan
    Wang, Baocang
    Yang, Yuehua
    Zhang, Zhili
    Zhou, Jingxian
    PLOS ONE, 2019, 14 (05):