Integrating Sensor Embeddings with Variant Transformer Graph Networks for Enhanced Anomaly Detection in Multi-Source Data

被引:0
|
作者
Meng, Fanjie [1 ]
Ma, Liwei [2 ]
Chen, Yixin [3 ]
He, Wangpeng [1 ]
Wang, Zhaoqiang [4 ]
Wang, Yu [2 ]
机构
[1] Xidian Univ, Sch Aerosp Sci & Technol, Xian 710071, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Peoples R China
[3] Changan Univ, Key Lab Expressway Construct Machinery Shaanxi Pro, Xian 710064, Peoples R China
[4] High Tech Inst Xian, Xian 710025, Peoples R China
关键词
multi-source time series; anomaly detection; graph neural network; model interpretability; TIME-SERIES;
D O I
10.3390/math12172612
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
With the rapid development of sensor technology, the anomaly detection of multi-source time series data becomes more and more important. Traditional anomaly detection methods deal with the temporal and spatial information in the data independently, and fail to make full use of the potential of spatio-temporal information. To address this issue, this paper proposes a novel integration method that combines sensor embeddings and temporal representation networks, effectively exploiting spatio-temporal dynamics. In addition, the graph neural network is introduced to skillfully simulate the complexity of multi-source heterogeneous data. By applying a dual loss function-consisting of a reconstruction loss and a prediction loss-we further improve the accuracy of anomaly detection. This strategy not only promotes the ability to learn normal behavior patterns from historical data, but also significantly improves the predictive ability of the model, making anomaly detection more accurate. Experimental results on four multi-source sensor datasets show that our proposed method performs better than the existing models. In addition, our approach enhances the ability to interpret anomaly detection by analyzing the sensors associated with the detected anomalies.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Hybrid graph transformer networks for multivariate time series anomaly detection
    Gao, Rong
    He, Wei
    Yan, Lingyu
    Liu, Donghua
    Yu, Yonghong
    Ye, Zhiwei
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (01): : 642 - 669
  • [32] Multi-Source Information Fusion for Drowsy Driving Detection Based on Wireless Sensor Networks
    Wei, Liang
    Jidin, Razali
    Mukhopadhyay, S. C.
    Chen, Chia-Pang
    2013 SEVENTH INTERNATIONAL CONFERENCE ON SENSING TECHNOLOGY (ICST), 2013, : 850 - 857
  • [33] A New Approach for Multi-Source Data Prediction in Wireless Sensor Networks: Collaborative Filtering
    Inanloo, Mahdieh
    Ashouri, Majid
    Gheibi, Sanaz
    Hemmatyar, A. M. Afshin
    2012 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP 2012), 2012,
  • [34] Unsupervised Anomaly Detection for Liquid Rocket Engines with Multi-source Data Density Estimation Autoencoder
    Liu, Shen
    Wang, Jun
    Chen, Jinglong
    Liu, Zijun
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2025, 61 (02): : 36 - 45
  • [35] Graph Multi-Resolution Transformer for Road Traffic Anomaly Detection
    Park, Donghyun
    Choi, Sung-Soo
    Lim, Donghyun
    Kang, Yong-Shin
    IEEE ACCESS, 2025, 13 : 27428 - 27437
  • [36] Transformer-Based Multi-Source Domain Adaptation Without Source Data
    Li, Gang
    Wu, Chao
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [37] A comprehensive drought monitoring method integrating multi-source data
    Shi, Xiaoliang
    Ding, Hao
    Wu, Mengyue
    Shi, Mengqi
    Chen, Fei
    Li, Yi
    Yang, Yuanqi
    PEERJ, 2022, 10
  • [38] Integrating multi-source big data to infer building functions
    Niu, Ning
    Liu, Xiaoping
    Jin, He
    Ye, Xinyue
    Liu, Yu
    Li, Xia
    Chen, Yimin
    Li, Shaoying
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2017, 31 (09) : 1871 - 1890
  • [39] Constructing TCM Knowledge Graph with Multi-Source Heterogeneous Data
    Zhai D.
    Lou Y.
    Kan H.
    He X.
    Liang G.
    Ma Z.
    Data Analysis and Knowledge Discovery, 2023, 7 (09) : 146 - 158
  • [40] Constructing the Power Knowledge graph by Multi-source Electricity Data
    Jiang, Guoyi
    Su, Linhua
    Liu, Haibo
    Cao, Yang
    Sun, Rui
    Diao, Fengxin
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON COMPUTER, INFORMATION AND TELECOMMUNICATION SYSTEMS (CITS), 2020, : 111 - 115