Federated Learning for Appearance-based Gaze Estimation in the Wild

被引:0
|
作者
Elfares, Mayar [1 ,2 ]
Hu, Zhiming [1 ,3 ]
Reisert, Pascal [2 ]
Bulling, Andreas [1 ]
Kuesters, Ralf [2 ]
机构
[1] Univ Stuttgart, Inst Visualisat & Interact Syst, Stuttgart, Germany
[2] Univ Stuttgart, Inst Informat Secur, Stuttgart, Germany
[3] Univ Stuttgart, Inst Modelling & Simulat Biomech Syst, Stuttgart, Germany
基金
欧洲研究理事会;
关键词
Gaze estimation; federated learning; privacy; gaze data distribution;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gaze estimation methods have significantly matured in recent years, but the large number of eye images required to train deep learning models poses significant privacy risks. In addition, the heterogeneous data distribution across different users can significantly hinder the training process. In this work, we propose the first federated learning approach for gaze estimation to preserve the privacy of gaze data. We further employ pseudo-gradient optimisation to adapt our federated learning approach to the divergent model updates to address the heterogeneous nature of in-the-wild gaze data in collaborative setups. We evaluate our approach on a real-world dataset (MPIIGaze) and show that our work enhances the privacy guarantees of conventional appearance-based gaze estimation methods, handles the convergence issues of gaze estimators, and significantly outperforms vanilla federated learning by 15.8% (from a mean error of 10.63 degrees to 8.95 degrees). As such, our work paves the way to develop privacy-aware collaborative learning setups for gaze estimation while maintaining the model's performance.
引用
收藏
页码:20 / 36
页数:17
相关论文
共 50 条
  • [31] MPIIGaze: Real World Dataset and Deep Appearance-Based Gaze Estimation
    Zhang, Xucong
    Sugano, Yusuke
    Fritz, Mario
    Bulling, Andreas
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (01) : 162 - 175
  • [32] Evaluating the Robustness of an Appearance-based Gaze Estimation Method for Multimodal Interfaces
    Li, Nanxiang
    Busso, Carlos
    ICMI'13: PROCEEDINGS OF THE 2013 ACM INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, 2013, : 91 - 98
  • [33] A Coarse-to-Fine Adaptive Network for Appearance-Based Gaze Estimation
    Cheng, Yihua
    Huang, Shiyao
    Wang, Fei
    Qian, Chen
    Lu, Feng
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 10623 - 10630
  • [34] Distraction Detection in Automotive Environment using Appearance-based Gaze Estimation
    Murthy, L. R. D.
    Mukhopadhyay, Abhishek
    Biswas, Pradipta
    COMPANION PROCEEDINGS OF THE 27TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, IUI 2022 COMPANION, 2022, : 38 - 41
  • [35] Appearance-Based Gaze Estimation With Online Calibration From Mouse Operations
    Sugano, Yusuke
    Matsushita, Yasuyuki
    Sato, Yoichi
    Koike, Hideki
    IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2015, 45 (06) : 750 - 760
  • [36] Appearance-Based Gaze Estimation via Evaluation-Guided Asymmetric Regression
    Cheng, Yihua
    Lu, Feng
    Zhang, Xucong
    COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 : 105 - 121
  • [37] Appearance-Based Gaze Estimation as a Benchmark for Eye Image Data Generation Methods
    Katrychuk, Dmytro
    Komogortsev, Oleg V.
    APPLIED SCIENCES-BASEL, 2024, 14 (20):
  • [38] Appearance-based gaze estimation using deep features and random forest regression
    Wang, Yafei
    Shen, Tianyi
    Yuan, Guoliang
    Bian, Jiming
    Fu, Xianping
    KNOWLEDGE-BASED SYSTEMS, 2016, 110 : 293 - 301
  • [39] Free-Head Appearance-Based Eye Gaze Estimation on Mobile Devices
    Jigang, Liu
    Lee, Bu Sung
    Rajan, Deepu
    2019 1ST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (ICAIIC 2019), 2019, : 232 - 237
  • [40] TabletGaze: dataset and analysis for unconstrained appearance-based gaze estimation in mobile tablets
    Huang, Qiong
    Veeraraghavan, Ashok
    Sabharwal, Ashutosh
    MACHINE VISION AND APPLICATIONS, 2017, 28 (5-6) : 445 - 461