Denoising Autoencoders for Learning from Noisy Patient-Reported Data

被引:0
|
作者
Rubin-Falcone, Harry [1 ]
Lee, Joyce M. [2 ]
Wiens, Jenna [1 ]
机构
[1] Univ Michigan, Comp Sci & Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Div Pediat Endocrinol, Ann Arbor, MI 48109 USA
来源
CONFERENCE ON HEALTH, INFERENCE, AND LEARNING, VOL 209 | 2023年 / 209卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Healthcare datasets often include patientreported values, such as mood, symptoms, and meals, which can be subject to varying levels of human error. Improving the accuracy of patient-reported data could help in several downstream tasks, such as remote patient monitoring. In this study, we propose a novel denoising autoencoder (DAE) approach to denoise patient-reported data, drawing inspiration from recent work in computer vision. Our approach is based on the observation that noisy patient-reported data are often collected alongside higher fidelity data collected from wearable sensors. We leverage these auxiliary data to improve the accuracy of the patient-reported data. Our approach combines key ideas from DAEs with co-teaching to iteratively filter and learn from clean patient-reported samples. Applied to the task of recovering carbohydrate values for blood glucose management in diabetes, our approach reduces noise (MSE) in patient-reported carbohydrates from 72g(2) (95% CI: 54-93) to 18g(2) (13-25), outperforming the best baseline (33g(2) (27-43)). Notably, our approach achieves strong performance with only access to patientreported target values, making it applicable to many settings where ground truth data may be unavailable.
引用
收藏
页码:393 / 409
页数:17
相关论文
共 50 条
  • [31] ON THE USES OF ROUTINE PATIENT-REPORTED HEALTH OUTCOME DATA
    Smith, Peter C.
    Street, Andrew D.
    HEALTH ECONOMICS, 2013, 22 (02) : 119 - 131
  • [32] Automating Patient-reported Data Collection: Does it Work?
    Bogor, Sayah
    Niknam, Kian
    Less, Justin
    Andaya, Veronica
    Swarup, Ishaan
    JOURNAL OF PEDIATRIC ORTHOPAEDICS, 2024, 44 (06) : 402 - 406
  • [33] LEARNING DENOISING BOUNDS FOR NOISY IMAGES
    Chatterjee, Priyam
    Milanfar, Peyman
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 1157 - 1160
  • [34] Patient-reported benefit from oculoplastic surgery
    Smith, H. B.
    Jyothi, S. B.
    Mahroo, O. A. R.
    Shams, P. N.
    Sira, M.
    Dey, S.
    Adewoyin, T.
    Cheung, V. T. F.
    Jones, C. A.
    EYE, 2012, 26 (11) : 1418 - 1423
  • [35] Patient-reported benefit from oculoplastic surgery
    H B Smith
    S B Jyothi
    O A R Mahroo
    P N Shams
    M Sira
    S Dey
    T Adewoyin
    V T F Cheung
    C A Jones
    Eye, 2012, 26 : 1418 - 1423
  • [36] Patient-reported outcomes
    Garratt, Andrew
    TIDSSKRIFT FOR DEN NORSKE LAEGEFORENING, 2015, 135 (07) : 668 - 668
  • [37] Patient-reported outcome
    Alten, R.
    Schneider, M.
    ZEITSCHRIFT FUR RHEUMATOLOGIE, 2014, 73 (08): : 696 - 697
  • [38] Online Denoising of Discrete Noisy Data
    Khadivi, Pejman
    Tandon, Ravi
    Ramakrishnan, Naren
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 671 - 675
  • [39] Patient-reported outcomes and patient-reported outcome measures in interstitial lung disease: where to go from here?
    Kalluri, Meena
    Luppi, Fabrizio
    Vancheri, Ada
    Vancheri, Carlo
    Balestro, Elisabetta
    Varone, Francesco
    Mogulkoc, Nesrin
    Cacopardo, Giulia
    Bargagli, Elena
    Renzoni, Elizabeth
    Torrisi, Sebastiano
    Calvello, Mariarosaria
    Libra, Alessandro
    Pavone, Mauro
    Bonella, Francesco
    Cottin, Vincent
    Valenzuela, Claudia
    Wijsenbeek, Marlies
    Bendstrup, Elisabeth
    EUROPEAN RESPIRATORY REVIEW, 2021, 30 (160):
  • [40] Machine learning in oncology—Perspectives in patient-reported outcome researchMachine Learning in der Onkologie – Perspektiven in der Patient-Reported Outcome Forschung (English version)
    Jens Lehmann
    Tim Cofala
    Michael Tschuggnall
    Johannes M. Giesinger
    Gerhard Rumpold
    Bernhard Holzner
    Der Onkologe, 2021, 27 (Suppl 2): : 150 - 155