The Homburg-Adelaide toric IOL nomogram: How to predict corneal power vectors from preoperative IOLMaster 700 keratometry and total corneal power in toric IOL implantation

被引:2
|
作者
Langenbucher, Achim [1 ]
Szentmary, Nora [2 ,3 ]
Wendelstein, Jascha [1 ,4 ]
Cayless, Alan [5 ]
Hoffmann, Peter [6 ]
Goggin, Michael [7 ,8 ]
机构
[1] Saarland Univ, Dept Expt Ophthalmol, Kirrberger Str 100 Bldg 22, D-66424 Homburg, Germany
[2] Saarland Univ, Dr Rolf M Schwiete Ctr Limbal Stem Cell & Aniridia, Homburg, Germany
[3] Semmelweis Univ, Dept Ophthalmol, Budapest, Hungary
[4] Johannes Kepler Univ Linz, Dept Ophthalmol, Linz, Austria
[5] Open Univ, Sch Phys Sci, Milton Keynes, England
[6] Augen & Laserklin Castrop Rauxel, Castrop Rauxel, Germany
[7] Univ Adelaide, Fac Hlth & Med Sci, Adelaide, SA, Australia
[8] Queen Elizabeth Hosp, Adelaide, SA, Australia
关键词
feedforward neural network; keratometric power; multilinear regression; statistical correction models; toric intraocular lenses; total corneal power; vector analysis; GOGGIN NOMOGRAM; ASTIGMATISM; ACCURACY; SURFACE;
D O I
10.1111/aos.16742
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
PurposeThe purpose of this study is to compare the reconstructed corneal power (RCP) by working backwards from the post-implantation spectacle refraction and toric intraocular lens power and to develop the models for mapping preoperative keratometry and total corneal power to RCP.MethodsRetrospective single-centre study involving 442 eyes treated with a monofocal and trifocal toric IOL (Zeiss TORBI and LISA). Keratometry and total corneal power were measured preoperatively and postoperatively using IOLMaster 700. Feedforward neural network and multilinear regression models were derived to map keratometry and total corneal power vector components (equivalent power EQ and astigmatism components C0 and C45) to the respective RCP components.ResultsMean preoperative/postoperative C0 for keratometry and total corneal power was -0.14/-0.08 dioptres and -0.30/-0.24 dioptres. All mean C45 components ranged between -0.11 and -0.20 dioptres. With crossvalidation, the neural network and regression models showed comparable results on the test data with a mean squared prediction error of 0.20/0.18 and 0.22/0.22 dioptres2 and on the training data the neural network models outperformed the regression models with 0.11/0.12 and 0.22/0.22 dioptres2 for predicting RCP from preoperative keratometry/total corneal power.ConclusionsBased on our dataset, both the feedforward neural network and multilinear regression models showed good precision in predicting the power vector components of RCP from preoperative keratometry or total corneal power. With a similar performance in crossvalidation and a simple implementation in consumer software, we recommend implementation of regression models in clinical practice.
引用
收藏
页码:e19 / e30
页数:12
相关论文
共 10 条
  • [1] Comparison of corneal topography maps obtained using the IOLMaster 700® and the Anterion® in candidates for toric IOL implantation
    Chudzinski, Roman
    Levron, Antoine
    Agard, Emilie
    Douma, Ikrame
    Billant, Jeremy
    Dot, Corinne
    EYE, 2024, 38 (13) : 2625 - 2630
  • [2] Comparing refractive outcomes of a standard industry toric IOL calculator using anterior corneal astigmatism and total corneal refractive power
    C. Kern
    L. El Kaissi
    K. Kortuem
    M. Shajari
    E. Vounotrypidis
    A. Langenbucher
    S. Priglinger
    W. J. Mayer
    Graefe's Archive for Clinical and Experimental Ophthalmology, 2020, 258 : 345 - 350
  • [3] Comparing refractive outcomes of a standard industry toric IOL calculator using anterior corneal astigmatism and total corneal refractive power
    Kern, C.
    El Kaissi, L.
    Kortuem, K.
    Shajari, M.
    Vounotrypidis, E.
    Langenbucher, A.
    Priglinger, S.
    Mayer, W. J.
    GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2020, 258 (02) : 345 - 350
  • [4] Predictive accuracy of Barrett TK toric calculator compared to measured posterior corneal astigmatism using Pentacam in toric IOL power calculation
    Tamilarasi, S.
    Joseph, Ashalyne James
    Dandapani, Ramamurthy
    INDIAN JOURNAL OF OPHTHALMOLOGY, 2024, 72 (04) : 582 - 586
  • [5] Differences Between Simulated Keratometry and Total Corneal Power in Eyes With Keratoconus and a Formula to Improve IOL Power Calculation Results
    Coutinho, Catarina P.
    Schiano-Lomoriello, Domenico
    Mazzotta, Cosimo
    Ferrise, Marco
    Hoffer, Kenneth J.
    Ribeiro, Filomena J.
    Dias, Joao Mendanha
    Savini, Giacomo
    JOURNAL OF REFRACTIVE SURGERY, 2024, 40 (04) : e253 - e259
  • [6] Intraocular lens constant optimization in toric intraocular lens calculation using keratometry and total corneal power
    Liang, Jianheng
    Liu, Hui
    Zhou, Suowang
    Zhou, Lijing
    Qian, Zhuyun
    Jiang, Lihong
    Chen, Xu
    EUROPEAN JOURNAL OF OPHTHALMOLOGY, 2023, 33 (01) : 230 - 238
  • [7] Assessing the Likely Effect of Posterior Corneal Curvature on Toric IOL Calculation for IOLs of 2.50 D or Greater Cylinder Power
    LaHood, Benjamin R.
    Goggin, Michael
    Esterman, Adrian
    JOURNAL OF REFRACTIVE SURGERY, 2017, 33 (11) : 730 - 735
  • [8] Prediction of total corneal power from measured anterior corneal power on the IOLMaster 700 using a feedforward shallow neural network
    Langenbucher, Achim
    Cayless, Alan
    Szentmary, Nora
    Weisensee, Johannes
    Wendelstein, Jascha
    Hoffmann, Peter
    ACTA OPHTHALMOLOGICA, 2022, 100 (05) : E1080 - E1087
  • [9] Prediction of corneal power vectors after cataract surgery with toric lens implantation-A vector analysis
    Langenbucher, Achim
    Szentmary, Nora
    Cayless, Alan
    Wendelstein, Jascha
    Hoffmann, Peter
    PLOS ONE, 2023, 18 (09):
  • [10] Accuracy of Total Corneal Power Calculation for Multifocal Toric Intraocular Lens Implantation: Swept-Source OCT-Based Biometer vs Scheimpflug Tomographer
    Choi, Ayoung
    Kwon, Hyunggoo
    Jeon, Sohee
    JOURNAL OF REFRACTIVE SURGERY, 2021, 37 (10) : 686 - +