Zhang-Zhang Polynomials of Phenylenes and Benzenoid Graphs

被引:0
|
作者
Tratnik, Niko [1 ,2 ]
机构
[1] Univ Maribor, Fac Nat Sci & Math, Koroska Cesta 160, Maribor 2000, Slovenia
[2] Inst Math Phys & Mech, Jadranska 19, Ljubljana 1000, Slovenia
关键词
ALGEBRAIC STRUCTURE COUNT; PERFECT MATCHINGS; RESONANCE GRAPHS; CUBE; EQUIVALENCE;
D O I
10.46793/match.92-1.025T
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The aim of this paper is to study some variations of the ZhangZhang polynomial for phenylenes, which can be obtained as special cases of the multivariable Zhang-Zhang polynomial. Firstly, we prove the equality between the first Zhang-Zhang polynomial of a phenylene and the generalized Zhang-Zhang polynomial of some benzenoid graph, which enables us to prove also the equality between the first Zhang-Zhang polynomial and the generalized cube polynomial of the resonance graph. Next, some results on the roots of the second Zhang-Zhang polynomial of phenylenes are provided and another expression for this polynomial is established. Finally, we give structural interpretation for (partial) derivatives of different Zhang-Zhang polynomials.
引用
收藏
页码:25 / 53
页数:248
相关论文
共 50 条
  • [41] Zhang Xiaogang
    Lovelace, C
    ART IN AMERICA, 2001, 89 (03): : 132 - 132
  • [42] Zhang Yimou
    Andersen, Jesper
    KOSMORAMA, 2005, (236): : 211 - 214
  • [43] Zhang Xiaogang
    Tinari, Philip
    ARTFORUM INTERNATIONAL, 2009, 47 (05): : 138 - 138
  • [44] On a question of Zhang
    McCarthy, Dermot
    Yang, Yong
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (12) : 5133 - 5134
  • [45] Daxun Zhang
    Hormick, P
    STRAD, 2004, 115 (1372): : 783 - 783
  • [46] Zhang Hui
    Chinnery, Colin
    ARTFORUM INTERNATIONAL, 2009, 48 (01): : 313 - 314
  • [47] ZHANG,DAQIAN
    DARGENCE, Y
    ARTS OF ASIA, 1994, 24 (03): : 8 - 8
  • [48] Zhang Hong
    Haggerty, G
    ARTNEWS, 2004, 103 (06): : 115 - 115
  • [49] ZHANG HONGTU
    Tam, Herb
    ARTFORUM INTERNATIONAL, 2015, 54 (01): : 207 - 207
  • [50] ZHANG XIAOGANG
    Heartney, Eleanor
    ART IN AMERICA, 2009, 97 (03): : 134 - 135