From Edge-State Injection to the Preparation of Fractional Chern Insulators

被引:2
|
作者
Wang, Botao [1 ]
Aidelsburger, Monika [2 ,3 ,4 ]
Dalibard, Jean [5 ]
Eckardt, Andre [6 ]
Goldman, Nathan [1 ,5 ]
机构
[1] Univ Libre Bruxelles, CENOLI, CP 231,Campus Plaine, B-1050 Brussels, Belgium
[2] Ludwig Maximilians Univ Munchen, Fac Phys, Schellingstr 4, D-80799 Munich, Germany
[3] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[4] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
[5] Sorbonne Univ, Lab Kastler Brossel, CNRS, ENS,Univ PSL,Coll France, 11 Pl Marcelin Berthelot, F-75005 Paris, France
[6] Tech Univ Berlin, Inst Theoret Phys, Hardenbergstr 36, D-10623 Berlin, Germany
关键词
THERMODYNAMIC DERIVATION; QUANTUM; ENTANGLEMENT; EMERGENCE; FERMIONS; ENTROPY; ATOMS; SOUND; GAS;
D O I
10.1103/PhysRevLett.132.163402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Optical box traps offer new possibilities for quantum-gas experiments. Building on their exquisite spatial and temporal control, we propose to engineer system-reservoir configurations using box traps, in view of preparing and manipulating topological atomic states in optical lattices. First, we consider the injection of particles from the reservoir to the system: this scenario is shown to be particularly well suited to activating energy-selective chiral edge currents, but also to prepare fractional Chern insulating ground states. Then, we devise a practical evaporative-cooling scheme to effectively cool down atomic gases into topological ground states. Our open-system approach to optical-lattice settings provides a new path for the investigation of ultracold quantum matter, including strongly correlated and topological phases.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Nanoscale mapping of edge-state conductivity and charge-trap activity in topological insulators
    Shekhar, Shashank
    Oh, Yuhyeon
    Jeong, Jin-Young
    Choi, Yoonji
    Cho, Duckhyung
    Hong, Seunghun
    MATERIALS HORIZONS, 2023, 10 (06) : 2245 - 2253
  • [22] Dissipative preparation of Chern insulators
    Budich, Jan Carl
    Zoller, Peter
    Diehl, Sebastian
    PHYSICAL REVIEW A, 2015, 91 (04):
  • [23] Wave functions for fractional Chern insulators
    McGreevy, John
    Swingle, Brian
    Ky-Anh Tran
    PHYSICAL REVIEW B, 2012, 85 (12)
  • [24] Fractional Chern insulators and the W∞ algebra
    Parameswaran, S. A.
    Roy, R.
    Sondhi, S. L.
    PHYSICAL REVIEW B, 2012, 85 (24):
  • [25] Pseudopotential formalism for fractional Chern insulators
    Lee, Ching Hua
    Thomale, Ronny
    Qi, Xiao-Liang
    PHYSICAL REVIEW B, 2013, 88 (03):
  • [26] Characterization of quasiholes in fractional Chern insulators
    Liu, Zhao
    Bhatt, R. N.
    Regnault, Nicolas
    PHYSICAL REVIEW B, 2015, 91 (04):
  • [27] Fractional Chern insulators in singular geometries
    He, Ai-Lei
    Luo, Wei-Wei
    Wang, Yi-Fei
    Gong, Chang-De
    PHYSICAL REVIEW B, 2019, 99 (16)
  • [28] The edge state of nanographene and the magnetism of the edge-state spins
    Enoki, Toshiaki
    Takai, Kazuyuki
    SOLID STATE COMMUNICATIONS, 2009, 149 (27-28) : 1144 - 1150
  • [29] Splitting electrons into quasiparticles with a fractional edge-state Mach-Zehnder interferometer
    Ponomarenko, V. V.
    Averin, D. V.
    PHYSICAL REVIEW B, 2009, 79 (04):
  • [30] Haldane statistics for fractional Chern insulators with an arbitrary Chern number
    Wu, Yang-Le
    Regnault, N.
    Bernevig, B. Andrei
    PHYSICAL REVIEW B, 2014, 89 (15):