A Multi-Scale Spatial-Temporal Graph Neural Network-Based Method of Multienergy Load Forecasting in Integrated Energy System

被引:19
|
作者
Zhuang, Wei [1 ]
Fan, Jili [1 ]
Xia, Min [2 ]
Zhu, Kedong [3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Comp Sci, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Atmospher Environm & Equipm, Nanjing 210044, Peoples R China
[3] China Elect Power Res Inst, Power Automat Dept, Nanjing 210003, Peoples R China
关键词
Correlation; Couplings; Load forecasting; Load modeling; Feature extraction; Cooling; Correlation coefficient; Multienergy load forecasting; integrated energy system; spatial-temporal graph neural network; attention mechanism; ATTENTION;
D O I
10.1109/TSG.2023.3315750
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurately predicting multi-energy loads is essential for optimizing the dispatch and economic operation of integrated energy systems (IES). However, existing multi-energy load forecasting methods have two main limitations: (1) they fail to consider the complex correlations between multi-energy loads and auxiliary features; (2) single time-scale feature extraction methods can result in the loss of critical temporal feature information. Therefore, multi-energy load forecasting remains a challenging task. To overcome these limitations, this paper proposes a novel multi-energy load forecasting method based on a multi-scale spatio-temporal graph neural network (MS-STGNN). Specifically, the proposed continuous graph learning module quantifies the correlations between multi-energy loads and auxiliary features using an adjacency matrix, while the graph convolution module aggregates feature information among neighboring nodes through the same matrix to improve the correlations between multi-energy loads and auxiliary features. The model's robustness is further enhanced by the feature attention module. Moreover, to mitigate temporal feature information loss, we develop a multi-scale convolution module that uses filters of various sizes to extract multi-dimensional temporal features of different time steps. Extensive experiments show that the MS-STGNN method has higher prediction accuracy and better generalization ability than existing methods on the IES dataset at the Tempe campus of Arizona State University. The code is publicly available at https://github.com/nuist-cs/MS-STGNN.
引用
收藏
页码:2652 / 2666
页数:15
相关论文
共 50 条
  • [21] Spatial-temporal attention with graph and general neural network-based sign language recognition
    Miah, Abu Saleh Musa
    Hasan, Md. Al Mehedi
    Okuyama, Yuichi
    Tomioka, Yoichi
    Shin, Jungpil
    PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (02)
  • [22] Multi-view Cascading Spatial-Temporal Graph Neural Network for Traffic Flow Forecasting
    Liu, Zibo
    Fu, Kaiqun
    Liu, Xiaotong
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT II, 2022, 13530 : 605 - 616
  • [23] Multi-scale convolutional networks for traffic forecasting with spatial-temporal attention
    Li, Zilong
    Ren, Qianqian
    Chen, Long
    Li, Jinbao
    Li, Xiaokun
    PATTERN RECOGNITION LETTERS, 2022, 164 : 53 - 59
  • [24] Method of spatial load forecasting error evaluation based on the multi-scale spatial resolution
    Xiao, Bai
    Pu, Rui
    Mu, Gang
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2015, 35 (22): : 5731 - 5739
  • [25] Day-ahead bus load forecasting method based on fully connected spatial-temporal graph attention network
    Chen, Yucong
    Li, Bin
    Chen, Biyun
    Bai, Xiaoqing
    ELECTRIC POWER SYSTEMS RESEARCH, 2025, 241
  • [26] Physics-informed graph neural network for spatial-temporal production forecasting
    Liu, Wendi
    Pyrcz, Michael J.
    GEOENERGY SCIENCE AND ENGINEERING, 2023, 223
  • [27] STEGNN: Spatial-Temporal Embedding Graph Neural Networks for Road Network Forecasting
    Si, Jiaqi
    Gan, Xinbiao
    Xiao, Tiaojie
    Yang, Bo
    Dong, Dezun
    Pang, Zhengbin
    2022 IEEE 28TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, ICPADS, 2022, : 826 - 834
  • [28] Skeleton-based action recognition with multi-stream, multi-scale dilated spatial-temporal graph convolution network
    Zhang, Haiping
    Liu, Xu
    Yu, Dongjin
    Guan, Liming
    Wang, Dongjing
    Ma, Conghao
    Hu, Zepeng
    APPLIED INTELLIGENCE, 2023, 53 (14) : 17629 - 17643
  • [29] Skeleton-based action recognition with multi-stream, multi-scale dilated spatial-temporal graph convolution network
    Haiping Zhang
    Xu Liu
    Dongjin Yu
    Liming Guan
    Dongjing Wang
    Conghao Ma
    Zepeng Hu
    Applied Intelligence, 2023, 53 : 17629 - 17643
  • [30] Spatial-temporal graph neural network based on node attention
    Li, Qiang
    Wan, Jun
    Zhang, Wucong
    Kweh, Qian Long
    APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2022, 7 (02) : 703 - 712