Estimation of aboveground biomass from spectral and textural characteristics of paddy crop using UAV-multispectral images and machine learning techniques

被引:3
|
作者
Biswal, Sudarsan [1 ]
Pathak, Navneet [1 ]
Chatterjee, Chandranath [1 ]
Mailapalli, Damodhara Rao [1 ]
机构
[1] Indian Inst Technol Kharagpur, Agr & Food Engn Dept, Kharagpur, W Bengal, India
关键词
Aboveground biomass; UAV-multispectral images; vegetation-indices; normalised difference texture indices (NDTIs); paddy crop; VEGETATION INDEXES; NITROGEN STATUS; SURFACE MODELS; PLANT HEIGHT; GRAIN-YIELD; RESOLUTION; FOREST; RED; CLASSIFICATION; COMBINATIONS;
D O I
10.1080/10106049.2024.2364725
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Multispectral (MS) images offer essential spectral information for monitoring paddy crops' Aboveground-biomass (AGB), but efficiency decreases due to background materials and high canopy biomass. Texture reveals canopy structure and can be employed in vegetation-indices (VIs) to enhance monitoring accuracy. This study focuses to estimate AGB of paddy crop by exploring the combined potential of spectral and textural features of unmanned aerial vehicle (UAV)-MS images using linear regression (LR), multi-linear regression (MLR), and random forest (RF) models. Results demonstrate that near infrared (NIR)-based VIs outperform Colour-Indices. Normalised difference texture indices (NDTIs) composed of NIR, red-edge (RE) and blue (B) bands outperform all-evaluated VIs and grey-level co-occurrence matrix (GLCM)-textures for different growth stages. Combining VIs and NDTIs, RF performs best compared to other models. The outcomes suggest that the combined spectral and texture information can significantly improve estimation of AGB in paddy crops compared to using either of them alone.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Estimation of forest aboveground biomass using the integration of spectral and textural features from GF-1 satellite image
    Zhang, Linjing
    Shao, Zhenfeng
    Wang, Zhiguo
    2016 4rth International Workshop on Earth Observation and Remote Sensing Applications (EORSA), 2016,
  • [22] Using the plant height and canopy coverage to estimation maize aboveground biomass with UAV digital images
    Shu, Meiyan
    Li, Qing
    Ghafoor, Abuzar
    Zhu, Jinyu
    Li, Baoguo
    Ma, Yuntao
    EUROPEAN JOURNAL OF AGRONOMY, 2023, 151
  • [23] Improved estimation of herbaceous crop aboveground biomass using UAV-derived crop height combined with vegetation indices
    Martina Corti
    Daniele Cavalli
    Giovanni Cabassi
    Luca Bechini
    Nicolò Pricca
    Dario Paolo
    Laura Marinoni
    Antonio Vigoni
    Luigi Degano
    Pietro Marino Gallina
    Precision Agriculture, 2023, 24 : 587 - 606
  • [24] CROP CLASSIFICATION USING A COMBINATION OF SPECTRAL INDICES FROM SPATIOTEMPORAL MULTISPECTRAL IMAGERY AND MACHINE LEARNING
    Nofrizal, Adenan Yandra
    Sonobe, Rei
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5820 - 5823
  • [25] Improved estimation of herbaceous crop aboveground biomass using UAV-derived crop height combined with vegetation indices
    Corti, Martina
    Cavalli, Daniele
    Cabassi, Giovanni
    Bechini, Luca
    Pricca, Nicolo
    Paolo, Dario
    Marinoni, Laura
    Vigoni, Antonio
    Degano, Luigi
    Gallina, Pietro Marino
    PRECISION AGRICULTURE, 2023, 24 (02) : 587 - 606
  • [26] Prediction of Strawberry Dry Biomass from UAV Multispectral Imagery Using Multiple Machine Learning Methods
    Zheng, Caiwang
    Abd-Elrahman, Amr
    Whitaker, Vance
    Dalid, Cheryl
    REMOTE SENSING, 2022, 14 (18)
  • [27] Integrating Spectral, Textural, and Morphological Data for Potato LAI Estimation from UAV Images
    Bian, Mingbo
    Chen, Zhichao
    Fan, Yiguang
    Ma, Yanpeng
    Liu, Yang
    Chen, Riqiang
    Feng, Haikuan
    AGRONOMY-BASEL, 2023, 13 (12):
  • [28] Estimation of vegetation fraction using RGB and multispectral images from UAV
    de Jesus Marcial-Pablo, Mariana
    Gonzalez-Sanchez, Alberto
    Ivan Jimenez-Jimenez, Sergio
    Ernesto Ontiveros-Capurata, Ronald
    Ojeda-Bustamante, Waldo
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (02) : 420 - 438
  • [29] Evaluation of Machine Learning Regression Techniques for Estimating Winter Wheat Biomass Using Biophysical, Biochemical, and UAV Multispectral Data
    Chiu, Marco Spencer
    Wang, Jinfei
    DRONES, 2024, 8 (07)
  • [30] Predicting canopy chlorophyll concentration in citronella crop using machine learning algorithms and spectral vegetation indices derived from UAV multispectral imagery
    Khan, Mohammad Saleem
    Yadav, Priya
    Semwal, Manoj
    Prasad, Nupoor
    Verma, Rajesh Kumar
    Kumar, Dipender
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 219