Estimation of aboveground biomass from spectral and textural characteristics of paddy crop using UAV-multispectral images and machine learning techniques

被引:3
|
作者
Biswal, Sudarsan [1 ]
Pathak, Navneet [1 ]
Chatterjee, Chandranath [1 ]
Mailapalli, Damodhara Rao [1 ]
机构
[1] Indian Inst Technol Kharagpur, Agr & Food Engn Dept, Kharagpur, W Bengal, India
关键词
Aboveground biomass; UAV-multispectral images; vegetation-indices; normalised difference texture indices (NDTIs); paddy crop; VEGETATION INDEXES; NITROGEN STATUS; SURFACE MODELS; PLANT HEIGHT; GRAIN-YIELD; RESOLUTION; FOREST; RED; CLASSIFICATION; COMBINATIONS;
D O I
10.1080/10106049.2024.2364725
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Multispectral (MS) images offer essential spectral information for monitoring paddy crops' Aboveground-biomass (AGB), but efficiency decreases due to background materials and high canopy biomass. Texture reveals canopy structure and can be employed in vegetation-indices (VIs) to enhance monitoring accuracy. This study focuses to estimate AGB of paddy crop by exploring the combined potential of spectral and textural features of unmanned aerial vehicle (UAV)-MS images using linear regression (LR), multi-linear regression (MLR), and random forest (RF) models. Results demonstrate that near infrared (NIR)-based VIs outperform Colour-Indices. Normalised difference texture indices (NDTIs) composed of NIR, red-edge (RE) and blue (B) bands outperform all-evaluated VIs and grey-level co-occurrence matrix (GLCM)-textures for different growth stages. Combining VIs and NDTIs, RF performs best compared to other models. The outcomes suggest that the combined spectral and texture information can significantly improve estimation of AGB in paddy crops compared to using either of them alone.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Integrating the Textural and Spectral Information of UAV Hyperspectral Images for the Improved Estimation of Rice Aboveground Biomass
    Xu, Tianyue
    Wang, Fumin
    Xie, Lili
    Yao, Xiaoping
    Zheng, Jueyi
    Li, Jiale
    Chen, Siting
    REMOTE SENSING, 2022, 14 (11)
  • [2] Improved Estimation of Aboveground Biomass in Rubber Plantations Using Deep Learning on UAV Multispectral Imagery
    Tan, Hongjian
    Kou, Weili
    Xu, Weiheng
    Wang, Leiguang
    Wang, Huan
    Lu, Ning
    DRONES, 2025, 9 (01)
  • [3] Improved estimation of rice aboveground biomass combining textural and spectral analysis of UAV imagery
    Zheng, Hengbiao
    Cheng, Tao
    Zhou, Meng
    Li, Dong
    Yao, Xia
    Tian, Yongchao
    Cao, Weixing
    Zhu, Yan
    PRECISION AGRICULTURE, 2019, 20 (03) : 611 - 629
  • [4] Improved estimation of rice aboveground biomass combining textural and spectral analysis of UAV imagery
    Hengbiao Zheng
    Tao Cheng
    Meng Zhou
    Dong Li
    Xia Yao
    Yongchao Tian
    Weixing Cao
    Yan Zhu
    Precision Agriculture, 2019, 20 : 611 - 629
  • [5] Machine Learning Regression Analysis for Estimation of Crop Emergence Using Multispectral UAV Imagery
    Banerjee, Bikram P.
    Sharma, Vikas
    Spangenberg, German
    Kant, Surya
    REMOTE SENSING, 2021, 13 (15)
  • [6] Estimation of Strawberry Crop Productivity by Machine Learning Algorithms Using Data from Multispectral Images
    de Oliveira, Larissa Silva
    Castoldi, Renata
    Martins, George Deroco
    Medeiros, Matheus Henrique
    AGRONOMY-BASEL, 2023, 13 (05):
  • [7] Aboveground mangrove biomass estimation in Beibu Gulf using machine learning and UAV remote sensing
    Tian, Yichao
    Huang, Hu
    Zhou, Guoqing
    Zhang, Qiang
    Tao, Jin
    Zhang, Yali
    Lin, Junliang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 781
  • [8] Multi-scale monitoring of rice aboveground biomass by combining spectral and textural information from UAV hyperspectral images
    Xu, Tianyue
    Wang, Fumin
    Shi, Zhou
    Miao, Yuxin
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 127
  • [9] Machine Learning in the Classification of Soybean Genotypes for Primary Macronutrients' Content Using UAV-Multispectral Sensor
    Santana, Dthenifer Cordeiro
    Teixeira Filho, Marcelo Carvalho Minhoto
    da Silva, Marcelo Rinaldi
    das Chagas, Paulo Henrique Menezes
    de Oliveira, Joao Lucas Gouveia
    Baio, Fabio Henrique Rojo
    Campos, Cid Naudi Silva
    Teodoro, Larissa Pereira Ribeiro
    da Silva Junior, Carlos Antonio
    Teodoro, Paulo Eduardo
    Shiratsuchi, Luciano Shozo
    REMOTE SENSING, 2023, 15 (05)
  • [10] Estimation of Crop Biomass and Leaf Area Index from Multitemporal and Multispectral Imagery Using Machine Learning Approaches
    Gahrouei, Omid
    McNairn, Heather
    Hosseini, Mehdi
    Homayouni, Saeid
    CANADIAN JOURNAL OF REMOTE SENSING, 2020, 46 (01) : 84 - 99