Enhanced Image-Based Malware Classification Using Snake Optimization Algorithm With Deep Convolutional Neural Network

被引:2
|
作者
Duraibi, Salahaldeen [1 ]
机构
[1] Jazan Univ, Coll Engn & Comp Sci, Jazan 45142, Saudi Arabia
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Malware; Classification algorithms; Feature extraction; Convolutional neural networks; Computer architecture; Computational modeling; Optimization; Deep learning; Malware detection; Snake Optimization Algorithm; deep learning; ShuffleNet; convolutional neural network;
D O I
10.1109/ACCESS.2024.3425593
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Malware is a malicious software intended to cause damage to computer systems. In recent times, significant proliferation of malware utilized for illegal and malicious goals has been recorded. Several machine and deep learning methods are widely used for the detection and classification of malwares. Image-based malware detection includes the usage of machine learning and computer vision models for analyzing the visual representation of malware, including binary images or screenshots, for the purpose of detecting malicious behaviors. This techniques provides the potential to identify previously hidden or polymorphic malware variants based on the visual features, which provide a further layer of defense against emerging cyber-attacks. This study introduces a new Snake Optimization Algorithm with Deep Convolutional Neural Network for Image-Based Malware Classification technique. The primary intention of the proposed technique is to apply a hyperparameter-tuned deep learning method for identifying and classifying malware images. Primarily, the ShuffleNet method is mainly used to derivate the feature vectors. Besides, the snake optimization algorithm can be deployed to boost the choice of hyperparameters for the ShuffleNet algorithm. For the recognition and classification of malware images, attention-based bi-directional long short-term memory model. The simulation evaluation of the proposed algorithm has been examined using the Malimg malware dataset. The experimental values inferred that the proposed methodology achieves promising performance with a maximum accuracy of 98.42% compared to existing models.
引用
收藏
页码:95047 / 95057
页数:11
相关论文
共 50 条
  • [21] A Novel Image-Based Malware Classification Model Using Deep Learning
    Jiang, Yongkang
    Li, Shenghong
    Wu, Yue
    Zou, Futai
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT II, 2019, 11954 : 150 - 161
  • [22] A Spectrogram Image-Based Network Anomaly Detection System Using Deep Convolutional Neural Network
    Khan, Adnan Shahid
    Ahmad, Zeeshan
    Abdullah, Johari
    Ahmad, Farhan
    IEEE ACCESS, 2021, 9 : 87079 - 87093
  • [23] Malware Classification using Deep Convolutional Neural Networks
    Kornish, David
    Geary, Justin
    Sansing, Victor
    Ezekiel, Soundararajan
    Pearlstein, Larry
    Njilla, Laurent
    2018 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2018,
  • [24] Fundus image-based cataract classification using a hybrid convolutional and recurrent neural network
    Azhar Imran
    Jianqiang Li
    Yan Pei
    Faheem Akhtar
    Tariq Mahmood
    Li Zhang
    The Visual Computer, 2021, 37 : 2407 - 2417
  • [25] Fundus image-based cataract classification using a hybrid convolutional and recurrent neural network
    Imran, Azhar
    Li, Jianqiang
    Pei, Yan
    Akhtar, Faheem
    Mahmood, Tariq
    Zhang, Li
    VISUAL COMPUTER, 2021, 37 (08): : 2407 - 2417
  • [26] Image-Based Learning to Measure Traffic Density Using a Deep Convolutional Neural Network
    Chung, Jiyong
    Sohn, Keemin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2018, 19 (05) : 1670 - 1675
  • [27] Malware classification through image processing with a convolutional neural network
    Marin, David
    Orozco-Rosas, Ulises
    Picos, Kenia
    OPTICS AND PHOTONICS FOR INFORMATION PROCESSING XVI, 2022, 12225
  • [28] A Memetic Algorithm for Evolving Deep Convolutional Neural Network in Image Classification
    Dong, Junwei
    Zhang, Liangjie
    Hou, Boyu
    Feng, Liang
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 2663 - 2669
  • [29] Deep Image: An Efficient Image-Based Deep Conventional Neural Network Method for Android Malware Detection
    Marzouk, Marwa A.
    Elkholy, Mohamed
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2023, 14 (04) : 838 - 845
  • [30] Rocket Image Classification Based on Deep Convolutional Neural Network
    Zhang, Liang
    Chen, Zhenhua
    Wang, Jian
    Huang, Zhaodun
    2018 10TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS (ICCCAS 2018), 2018, : 383 - 386