Deep-Reinforcement-Learning-Based Collision Avoidance of Autonomous Driving System for Vulnerable Road User Safety

被引:2
|
作者
Chen, Haochong [1 ]
Cao, Xincheng [1 ]
Guvenc, Levent [1 ]
Aksun-Guvenc, Bilin [1 ]
机构
[1] Ohio State Univ, Automated Driving Lab, Columbus, OH 43212 USA
基金
美国安德鲁·梅隆基金会;
关键词
autonomous driving system; deep reinforcement learning; collision avoidance;
D O I
10.3390/electronics13101952
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The application of autonomous driving system (ADS) technology can significantly reduce potential accidents involving vulnerable road users (VRUs) due to driver error. This paper proposes a novel hierarchical deep reinforcement learning (DRL) framework for high-performance collision avoidance, which enables the automated driving agent to perform collision avoidance maneuvers while maintaining appropriate speeds and acceptable social distancing. The novelty of the DRL method proposed here is its ability to accommodate dynamic obstacle avoidance, which is necessary as pedestrians are moving dynamically in their interactions with nearby ADSs. This is an improvement over existing DRL frameworks that have only been developed and demonstrated for stationary obstacle avoidance problems. The hybrid A* path searching algorithm is first applied to calculate a pre-defined path marked by waypoints, and a low-level path-following controller is used under cases where no VRUs are detected. Upon detection of any VRUs, however, a high-level DRL collision avoidance controller is activated to prompt the vehicle to either decelerate or change its trajectory to prevent potential collisions. The CARLA simulator is used to train the proposed DRL collision avoidance controller, and virtual raw sensor data are utilized to enhance the realism of the simulations. The model-in-the-loop (MIL) methodology is utilized to assess the efficacy of the proposed DRL ADS routine. In comparison to the traditional DRL end-to-end approach, which combines high-level decision making with low-level control, the proposed hierarchical DRL agents demonstrate superior performance.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] An Aircraft Collision Avoidance Method Based on Deep Reinforcement Learning
    Liu, Zuocheng
    Neretin, Evgeny
    Gao, Xiaoguang
    Wan, Kaifang
    2024 9TH INTERNATIONAL CONFERENCE ON CONTROL AND ROBOTICS ENGINEERING, ICCRE 2024, 2024, : 241 - 246
  • [32] A Novel Dynamically Adjusted Entropy Algorithm for Collision Avoidance in Autonomous Ships Based on Deep Reinforcement Learning
    Chen, Guoquan
    Huang, Zike
    Wang, Weijun
    Yang, Shenhua
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (09)
  • [33] Autonomous Driving Learning Preference of Collision Avoidance Maneuvers
    Nagahama, Akihito
    Saito, Takahiro
    Wada, Takahiro
    Sonoda, Kohei
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (09) : 5624 - 5634
  • [34] Static and Dynamic Collision Avoidance for Autonomous Robot Navigation in Diverse Scenarios based on Deep Reinforcement Learning
    Pico, Nabih
    Lee, Beomjoon
    Montero, Estrella
    Tadese, Meseret
    Auh, Eugene
    Doh, Myeongyun
    Moon, Hyungpil
    2023 20TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS, UR, 2023, : 281 - 286
  • [35] Method for collision avoidance based on deep reinforcement learning with path-speed control for an autonomous ship
    Chun, Do-Hyun
    Roh, Myung-Il
    Lee, Hye-Won
    Yu, Donghun
    INTERNATIONAL JOURNAL OF NAVAL ARCHITECTURE AND OCEAN ENGINEERING, 2024, 16
  • [36] Autonomous obstacle avoidance of UAV based on deep reinforcement learning
    Yang, Songyue
    Yu, Guizhen
    Meng, Zhijun
    Wang, Zhangyu
    Li, Han
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (04) : 3323 - 3335
  • [37] Simulated Autonomous Driving on Realistic Road Networks sing Deep Reinforcement Learning
    Klose, Patrick
    Mester, Rudolf
    APPLICATIONS OF INTELLIGENT SYSTEMS, 2018, 310 : 169 - 180
  • [38] Deep-Reinforcement-Learning-Based Driving Policy at Intersections Utilizing Lane Graph Networks
    Liu, Yuqi
    Zhang, Qichao
    Gao, Yinfeng
    Zhao, Dongbin
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2024, 16 (05) : 1759 - 1774
  • [39] Deep-reinforcement-learning-based controller design for pantograph and catenary system
    Sharma, Rohini
    Mahajan, Priya
    Garg, Rachana
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2025, 50 (02):
  • [40] Deep reinforcement learning for pedestrian collision avoidance and human-machine cooperative driving
    Li, Junxiang
    Yao, Liang
    Xu, Xin
    Cheng, Bang
    Ren, Junkai
    INFORMATION SCIENCES, 2020, 532 : 110 - 124