Chemical fault diagnosis network based on single domain generalization

被引:2
|
作者
Guo, Yu [1 ]
Zhang, Jundong [1 ]
机构
[1] Dalian Maritime Univ, Coll Marine Engn, Dalian 116026, Peoples R China
关键词
Fault diagnosis; Tennessee Eastman process; Process safety; Domain generalization; MODEL; IDENTIFICATION;
D O I
10.1016/j.psep.2024.05.106
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recent developments in fault diagnosis have leveraged domain generalization to address the issue of domain shift. Most existing methods focus on learning domain-invariant representations from multiple source domains. However, collecting valuable fault samples from varying operational conditions is challenging, and it is common for available data to originate from a single operational condition. Thus, this paper introduces a Multi-scale generative and adversarial Metric networks (MGAMN) for Chemical Process Fault Diagnosis. To enhance model generalization, a domain generation module was developed to create augmented domains with significant distributional differences from the source domain. The diagnostic task module then extracts domain-invariant features from both the source and augmented domains. A multi-scale generation strategy is established, utilizing multi-scale deep separable convolutions (Dsc) to ensure that the generated samples contain rich state information. Additionally, an adversarial training and metric learning strategy is designed to learn generalized features capable of resisting unknown domain shifts. Extensive diagnostic experiments on the non-isothermal continuous stirred tank reactor (CSTR) and the Tennessee Eastman Process (TEP) chemical datasets validate the effectiveness of the proposed method. Moreover, ablation studies confirm the effectiveness of the proposed modular strategy, demonstrating significant potential for practical applications.
引用
收藏
页码:1133 / 1144
页数:12
相关论文
共 50 条
  • [21] Cross-Domain Fault Diagnosis via Meta-Learning-Based Domain Generalization
    Yue, Fengyu
    Wang, Yong
    2022 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2022, : 1826 - 1832
  • [22] Domain generalization for rotating machinery fault diagnosis: A survey
    Xiao, Yiming
    Shao, Haidong
    Yan, Shen
    Wang, Jie
    Peng, Ying
    Liu, Bin
    ADVANCED ENGINEERING INFORMATICS, 2025, 64
  • [23] A convolutional neural network based on a capsule network with strong generalization for bearing fault diagnosis
    Zhu, Zhiyu
    Peng, Gaoliang
    Chen, Yuanhang
    Gao, Huijun
    NEUROCOMPUTING, 2019, 323 : 62 - 75
  • [24] Progressive Domain Expansion Network for Single Domain Generalization
    Li, Lei
    Gao, Ke
    Cao, Juan
    Huang, Ziyao
    Weng, Yepeng
    Mi, Xiaoyue
    Yu, Zhengze
    Li, Xiaoya
    Xia, Boyang
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 224 - 233
  • [25] Federated domain generalization for intelligent fault diagnosis based on pseudo-siamese network and robust global model aggregation
    Song, Yan
    Liu, Peng
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (02) : 685 - 696
  • [26] Federated domain generalization for intelligent fault diagnosis based on pseudo-siamese network and robust global model aggregation
    Yan Song
    Peng Liu
    International Journal of Machine Learning and Cybernetics, 2024, 15 : 685 - 696
  • [27] Deep Causal Disentanglement Network With Domain Generalization for Cross-Machine Bearing Fault Diagnosis
    Guo, Chaochao
    Sun, Youchao
    Yu, Rourou
    Ren, Xinxin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [28] An Auxiliary Branch Semisupervised Domain Generalization Network for Unseen Working Conditions Bearing Fault Diagnosis
    Zeng, Liang
    Chang, Xinyu
    Chen, Jia
    Wang, Shanshan
    IEEE SENSORS JOURNAL, 2024, 24 (24) : 42327 - 42342
  • [29] Federated adversarial domain generalization network: A novel machinery fault diagnosis method with data privacy
    Wang, Rui
    Huang, Weiguo
    Shi, Mingkuan
    Wang, Jun
    Shen, Changqing
    Zhu, Zhongkui
    KNOWLEDGE-BASED SYSTEMS, 2022, 256
  • [30] Deep Semisupervised Domain Generalization Network for Rotary Machinery Fault Diagnosis Under Variable Speed
    Liao, Yixiao
    Huang, Ruyi
    Li, Jipu
    Chen, Zhuyun
    Li, Weihua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (10) : 8064 - 8075