Constrained Multi-Agent Reinforcement Learning Policies for Cooperative Intersection Navigation and Traffic Compliance

被引:0
|
作者
Adan, Fahmy [1 ]
Feng, Yuxiang [1 ]
Angeloudis, Panagiotis [1 ]
Quddus, Mohammed [1 ]
Ochieng, Washington [1 ]
机构
[1] Imperial Coll London, Ctr Transport Studies, Dept Civil & Environm Engn, London SW7 2AZ, England
关键词
SAFE;
D O I
10.1109/ITSC57777.2023.10422440
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
End to end learning systems are becoming increasingly common in autonomous driving research, from perception, to planning and control. In particular, distributed reinforcement learning systems have demonstrated their applicability to the intersection navigation scenario. Such systems learn via a scalar reward signal from the environment and its design is crucial to the overall performance at the task. In this paper, we investigate an alternative approach to achieving desirable behavior by instead applying constraints to the action spaces and policies of the agents while maintaining a relatively sparse reward regimen. Initial experiments in a simulation environment have demonstrated the efficacy of this approach with simple restrictions in a discrete action space when compared to traditional traffic signal controllers and other Q-learning MARL algorithms. The performance analysis suggest that a more flexible action restriction may be more appropriate but nonetheless validates the utility of the approach by minimising delay and time loss, which we hope will stimulate additional research in policy constraints for autonomous driving.
引用
收藏
页码:4079 / 4085
页数:7
相关论文
共 50 条
  • [31] Multi-agent Cooperative Search based on Reinforcement Learning
    Sun, Yinjiang
    Zhang, Rui
    Liang, Wenbao
    Xu, Cheng
    PROCEEDINGS OF 2020 3RD INTERNATIONAL CONFERENCE ON UNMANNED SYSTEMS (ICUS), 2020, : 891 - 896
  • [32] Levels of Realism for Cooperative Multi-agent Reinforcement Learning
    Cunningham, Bryan
    Cao, Yong
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2012, PT I, 2012, 7331 : 573 - 582
  • [33] Cooperative Multi-agent Reinforcement Learning for Inventory Management
    Khirwar, Madhav
    Gurumoorthy, Karthik S.
    Jain, Ankit Ajit
    Manchenahally, Shantala
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE AND DEMO TRACK, ECML PKDD 2023, PT VI, 2023, 14174 : 619 - 634
  • [34] The Cooperative Reinforcement Learning in a Multi-Agent Design System
    Liu, Hong
    Wang, Jihua
    PROCEEDINGS OF THE 2013 IEEE 17TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2013, : 139 - 144
  • [35] Cooperative Multi-Agent Reinforcement Learning in Express System
    Li, Yexin
    Zheng, Yu
    Yang, Qiang
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 805 - 814
  • [36] A review of cooperative multi-agent deep reinforcement learning
    Afshin Oroojlooy
    Davood Hajinezhad
    Applied Intelligence, 2023, 53 : 13677 - 13722
  • [37] A review of cooperative multi-agent deep reinforcement learning
    Oroojlooy, Afshin
    Hajinezhad, Davood
    APPLIED INTELLIGENCE, 2023, 53 (11) : 13677 - 13722
  • [38] Centralized reinforcement learning for multi-agent cooperative environments
    Chengxuan Lu
    Qihao Bao
    Shaojie Xia
    Chongxiao Qu
    Evolutionary Intelligence, 2024, 17 : 267 - 273
  • [39] Diffusion Policies as Multi-Agent Reinforcement Learning Strategies
    Geng, Jinkun
    Liang, Xiubo
    Wang, Hongzhi
    Zhao, Yu
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT III, 2023, 14256 : 356 - 364
  • [40] Scalable Reinforcement Learning Policies for Multi-Agent Control
    Hsu, Christopher D.
    Jeong, Heejin
    Pappas, George J.
    Chaudhari, Pratik
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 4785 - 4791