Integration of negative-order modified Korteweg-de Vries equation with an integral source

被引:0
|
作者
Urazboev, Gayrat Urazalievich [1 ]
Khasanov, Muzaffar Masharipovich [1 ]
Ismoilov, Okhunjon Bahram Ugli [2 ]
机构
[1] Urgench State Univ, Dept Appl Math & Math Phys, Ul Kh Alimdjan 14, Urgench 220100, Uzbekistan
[2] Acad Sci Uzbek, VI Romanovskiy Inst Math, Khorezm Branch, Dept Differential Equat, Ul Kh Alimdjan 14, Urgench 220100, Uzbekistan
关键词
modified Korteweg-de Vries equation of negative order; Dirac system; inverse spectral problem; Dubrovin-Trubowitz system of equations; trace formulas; SELF-CONSISTENT SOURCE; MULTIPLE SOLITON; SCHRODINGER; KDV;
D O I
10.35634/2226-3594-2024-63-06
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, it is shown that the modified Korteweg-de Vries (mKdV) equation of negative order with an integral source can be integrated by the method of the inverse spectral problem. The main result of this work is the derivation of the evolution of the spectral data of the Dirac system with a periodic potential associated with the solution of the negative-order modified Korteweg-de Vries equation with an integral source. The obtained results allow us to apply the inverse problem method to solve the negative-order modified Korteweg-de Vries equation with an integral source.
引用
收藏
页码:80 / 90
页数:11
相关论文
共 50 条
  • [21] Residual symmetries and soliton-cnoidal wave interaction solutions for the negative-order Korteweg-de Vries equation
    Chen, Junchao
    Zhu, Shundong
    APPLIED MATHEMATICS LETTERS, 2017, 73 : 136 - 142
  • [22] STOCHASTIC MODIFIED KORTEWEG-DE VRIES EQUATION
    BLASZAK, M
    ACTA PHYSICA POLONICA A, 1986, 70 (05) : 503 - 515
  • [23] ANALYSIS OF A MODIFIED KORTEWEG-DE VRIES EQUATION
    LEO, M
    LEO, RA
    SOLIANI, G
    PROGRESS OF THEORETICAL PHYSICS, 1979, 62 (06): : 1475 - 1466
  • [24] MODIFIED KORTEWEG-DE VRIES EQUATION IN ELECTROHYDRODYNAMICS
    PERELMAN, TL
    FRIDMAN, AK
    ELYASHEV.MM
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1974, 66 (04): : 1316 - 1323
  • [25] Solutions to the modified Korteweg-de Vries equation
    Zhang, Da-Jun
    Zhao, Song-Lin
    Sun, Ying-Ying
    Zhou, Jing
    REVIEWS IN MATHEMATICAL PHYSICS, 2014, 26 (07)
  • [26] Breather solutions of a negative order modified Korteweg-de Vries equation and its nonlinear stability
    Wang, Jingqun
    Tian, Lixin
    Zhang, Yingnan
    PHYSICS LETTERS A, 2019, 383 (15) : 1689 - 1697
  • [27] KORTEWEG-DE VRIES EQUATION
    SHABAT, AB
    DOKLADY AKADEMII NAUK SSSR, 1973, 211 (06): : 1310 - 1313
  • [28] KORTEWEG-DE VRIES EQUATION
    TSUTSUMI, M
    PROCEEDINGS OF THE JAPAN ACADEMY, 1975, 51 (06): : 399 - 401
  • [29] Integration of the Modified Korteweg-de Vries Equation with a Self-Consistent Source in the Class of Periodic Functions
    Yakhshimuratov, A. B.
    Khasanov, M. M.
    DIFFERENTIAL EQUATIONS, 2014, 50 (04) : 533 - 540
  • [30] Integration of the modified Korteweg-de Vries equation with a self-consistent source in the class of periodic functions
    A. B. Yakhshimuratov
    M. M. Khasanov
    Differential Equations, 2014, 50 : 533 - 540