High-resolution feature pyramid attention network for high spatial resolution images land-cover classification in arid oasis zones

被引:0
|
作者
Chen, Pengdi [1 ]
Liu, Yong [1 ]
Liu, Yi [1 ]
Ren, Yuanrui [1 ]
Zhang, Baoan [2 ]
Gao, Xiaolong [2 ]
机构
[1] Lanzhou Univ, Coll Earth & Environm Sci, Lanzhou, Peoples R China
[2] Mapping Inst Gansu Prov, Dept Remote Sensing & Geog Natl Condit Monitoring, Lanzhou, Peoples R China
基金
芬兰科学院;
关键词
Arid oasis zones; high spatial resolution image; multi-scale; semantic segmentation; land-cover classification; REMOTE-SENSING IMAGES; SEMANTIC SEGMENTATION; NEURAL-NETWORK; AWARE; ROAD;
D O I
10.1080/01431161.2024.2349266
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Land-cover classification based on remote sensing technology has been adopted for decision-making concerning agricultural development, urban planning, and ecosystem protection in arid oasis zones. The semantic segmentation method based on deep learning, as a new paradigm, can effectively overcome the limitations of traditional pixel-based and object-based methods and obtain good classification results from high spatial resolution (HSR) remote sensing images. However, how to extract the exact category boundary and realize the high precision mapping is still a problem. This paper proposes a novel high-resolution feature pyramid attention network (HRFPANet) for land-cover classification. It effectively integrates the advantages of multi-scale feature extraction, attention mechanism, and feature fusion and alleviates boundary inconsistency, roughness, and category fragmentation associated with previous semantic segmentation models. The experimental results show that the mIoU score of HRFPANet is 79.5%, which is 11.5% and 2.6% higher than that of PSPNet and UPerNet, respectively. It proves the proposed model can be used for qualified land-cover mapping in arid oasis zones. Our source code is available at https://github.com/HPU-CPD/HRFPANet.git.
引用
收藏
页码:3664 / 3688
页数:25
相关论文
共 50 条
  • [31] Automatic Deep Learning Land Cover Classification Methods of High-resolution Remotely Sensed Images
    Li G.
    Bai Y.
    Yang X.
    Chen Z.
    Yu H.
    Journal of Geo-Information Science, 2021, 23 (09) : 1690 - 1704
  • [32] Automatic Land Use Classification in High-Resolution RGB Images
    Santecchia, Guillermina Soledad
    Delrieux, Claudio
    2024 L LATIN AMERICAN COMPUTER CONFERENCE, CLEI 2024, 2024,
  • [33] LAND COVER CLASSIFICATION OF VERY HIGH SPATIAL RESOLUTION SATELITE IMAGERY
    Chang, Chew Wai
    Shi, Cheng Hua
    Liew, Soo Chin
    Kwoh, Leong Keong
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 2685 - 2687
  • [34] Feature Evaluation with High-Resolution Images
    Cordes, Kai
    Grundmann, Lukas
    Ostermann, Joern
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2015, PT I, 2015, 9256 : 374 - 386
  • [35] A Land Cover Classification Method for High-Resolution Remote Sensing Images Based on NDVI Deep Learning Fusion Network
    Zhao, Jingzheng
    Wang, Liyuan
    Yang, Hui
    Wu, Penghai
    Wang, Biao
    Pan, Chengrong
    Wu, Yanlan
    REMOTE SENSING, 2022, 14 (21)
  • [36] Generation of the High-Resolution Land-Use and Land-Cover Map in Japan Version 21.11
    Hirayama, Sota
    Tadono, Takeo
    Mizukami, Yousei
    Ohki, Masato
    Imamura, Koichi
    Hirade, Naoyoshi
    Ohgushi, Fumi
    Dotsu, Masanori
    Yamanokuchi, Tsutomu
    Nasahara, Kenlo Nishida
    International Geoscience and Remote Sensing Symposium (IGARSS), 2022, 2022-July : 4339 - 4342
  • [37] Land cover classification of high-resolution image based on texture analysis
    Shen, Guangrong
    Sarris, Apostoles
    PROGRESS OF INFORMATION TECHNOLOGY IN AGRICULTURE, 2007, : 674 - 679
  • [38] GENERATION OF THE HIGH-RESOLUTION LAND-USE AND LAND-COVER MAP IN JAPAN VERSION 21.11
    Hirayama, Sota
    Tadono, Takeo
    Mizukami, Yousei
    Ohki, Masato
    Imamura, Koichi
    Hirade, Naoyoshi
    Ohgushi, Fumi
    Dotsu, Masanori
    Yamanokuchi, Tsutomu
    Nasahara, Kenlo Nishida
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 4339 - 4342
  • [39] High-resolution land cover classification using low-resolution global map data
    Carlotto, Mark J.
    SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XXII, 2013, 8745
  • [40] High-Resolution Feature Pyramid Network for Small Object Detection on Drone View
    Chen, Zhaodong
    Ji, Hongbing
    Zhang, Yongquan
    Zhu, Zhigang
    Li, Yifan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (01) : 475 - 489