Optimal error estimates of a decoupled finite element scheme for the unsteady inductionless MHD equations

被引:0
|
作者
Zhang, Xiaodi [1 ,2 ,3 ]
Dong, Shitian [4 ]
机构
[1] Zhengzhou Univ, Henan Acad Big Data, Zhengzhou 450052, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, Zhengzhou, Peoples R China
[3] Hunan Normal Univ, Sch Math & Stat, Key Lab Comp & Stochast Math, Minist Educ, Changsha, Hunan, Peoples R China
[4] Xinjiang Univ, Coll Math & Syst Sci, Urumqi, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
decoupled; finite element method; inductionless MHD equations; optimal error estimates; DENSITY CONSERVATIVE SCHEME; MAGNETIC REYNOLDS-NUMBER; PART II; FLOWS; ACCURATE;
D O I
10.1002/num.23108
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article focuses on a new and optimal error analysis of a decoupled finite element scheme for the inductionless magnetohydrodynamic (MHD) equations. The method uses the classical inf-sup stable Mini/Taylor-Hood (Mini/TH) finite element pairs to appropriate the velocity and pressure, and Raviart-Thomas (RT) face element to discretize the current density spatially, and the semi-implicit Euler scheme with an additional stabilized term and some delicate implicit-explicit handling for the coupling terms temporally. The method enjoys some impressive features that it is linear, decoupled, unconditional energy stable and charge-conservative. Due to the errors from the explicit handing of the coupling terms and the existence of the artificial stabilized term, and the contamination of the lower-order RT face discretization in the error analysis, the existing theoretical results are not unconditional and optimal. By utilizing the anti-symmetric structure of the coupling terms and the existence of the extra dissipative term, and the negative-norm estimate for the mixed Poisson projection, we establish the unconditional and optimal error estimates for all the variables. Numerical tests are presented to illustrate our theoretical findings.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] A Fully Divergence-Free Finite Element Scheme for Stationary Inductionless Magnetohydrodynamic Equations
    Xiaodi Zhang
    Xiaorong Wang
    Journal of Scientific Computing, 2022, 90
  • [22] Finite-element error estimates for the MAC scheme
    Girault, V
    Lopez, H
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1996, 16 (03) : 347 - 379
  • [23] Optimal L ∞ error estimates for finite element Galerkin methods for nonlinear evolution equations
    Omrani K.
    J. Appl. Math. Comp., 2008, 1-2 (247-262): : 247 - 262
  • [24] A CHARGE-CONSERVATIVE FINITE ELEMENT METHOD FOR INDUCTIONLESS MHD EQUATIONS. PART I: CONVERGENCE
    Li, Lingxiao
    Ni, Mingjiu
    Zheng, Weiying
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04): : B796 - B815
  • [25] A POSTERIORI ERROR ESTIMATES FOR FINITE ELEMENT APPROXIMATION OF UNSTEADY INCOMPRESSIBLE STOCHASTIC NAVIER-STOKES EQUATIONS
    Yang, Xiaoyuan
    Duan, Yuanyuan
    Guo, Yuhua
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (04) : 1579 - 1600
  • [26] Approximation of the inductionless MHD problem using a stabilized finite element method
    Planas, Ramon
    Badia, Santiago
    Codina, Ramon
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (08) : 2977 - 2996
  • [27] A generalized finite element θ-scheme for backward stochastic partial differential equations and its error estimates
    Sun, Yongwang
    Zhao, Weidong
    Zhao, Wenju
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2024, 58 (01) : 23 - 46
  • [28] A CHARGE-CONSERVATIVE FINITE ELEMENT METHOD FOR INDUCTIONLESS MHD EQUATIONS. PART II: A ROBUST SOLVER
    Li, Lingxiao
    Ni, Mingjiu
    Zheng, Weiying
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04): : B816 - B842
  • [29] Optimal error estimates of a Crank-Nicolson finite element projection method for magnetohydrodynamic equations
    Wang, Cheng
    Wang, Jilu
    Xia, Zeyu
    Xu, Liwei
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (03) : 767 - 789
  • [30] Optimal error estimates and recovery technique of a mixed finite element method for nonlinear thermistor equations
    Gao, Huadong
    Sun, Weiwei
    Wu, Chengda
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (04) : 3175 - 3200