Deep Learning-Based Glucose Prediction Models: A Guide for Practitioners and a Curated Dataset for Improved Diabetes Management

被引:3
|
作者
Langarica, Saul [1 ]
De La Vega, Diego [2 ,3 ,4 ]
Cariman, Nawel [1 ]
Miranda, Martin [2 ,3 ,4 ]
Andrade, David C. [5 ]
Nunez, Felipe [1 ]
Rodriguez-Fernandez, Maria [2 ,3 ,4 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Elect Engn, Santiago 7820436, Chile
[2] Pontificia Univ Catolica Chile, Inst Biol & Med Engn, Sch Engn, Santiago 7820436, Chile
[3] Pontificia Univ Catolica Chile, Inst Biol & Med Engn, Sch Med, Santiago 7820436, Chile
[4] Pontificia Univ Catolica Chile, Inst Biol & Med Engn, Sch Biol Sci, Santiago 7820436, Chile
[5] Univ Antofagasta, Fac Ciencias Salud, Ctr Invest Fisiol & Med Altura, Antofagasta 1271155, Chile
关键词
Glucose; Insulin; Predictive models; Diabetes; Blood; Biomedical monitoring; Data models; Glucose prediction; deep learning; transfer learning; ARTIFICIAL PANCREAS;
D O I
10.1109/OJEMB.2024.3365290
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Accurate short- and mid-term blood glucose predictions are crucial for patients with diabetes struggling to maintain healthy glucose levels, as well as for individuals at risk of developing the disease. Consequently, numerous efforts from the scientific community have focused on developing predictive models for glucose levels. This study harnesses physiological data collected from wearable sensors to construct a series of data-driven models based on deep learning approaches. We systematically compare these models to offer insights for practitioners and researchers venturing into glucose prediction using deep learning techniques. Key questions addressed in this work encompass the comparison of various deep learning architectures for this task, determining the optimal set of input variables for accurate glucose prediction, comparing population-wide, fine-tuned, and personalized models, and assessing the impact of an individual's data volume on model performance. Additionally, as part of our outcomes, we introduce a meticulously curated dataset inclusive of data from both healthy individuals and those with diabetes, recorded in free-living conditions. This dataset aims to foster research in this domain and facilitate equitable comparisons among researchers.
引用
收藏
页码:467 / 475
页数:9
相关论文
共 50 条
  • [1] Dynamic Glucose Prediction and Health Management of Diabetes Mellitus Based on Deep Learning
    Si, Jiarui
    Lin, Lingmin
    Chen, Hengle
    Zhang, Jiawen
    Huang, Chuanyi
    Yin, Yuan
    Li, Jing
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2020, 126 : 47 - 47
  • [2] Evaluation of Deep Learning-based prediction models in Microgrids
    Gyoeri, Alexey
    Niederau, Mathis
    Zeller, Violett
    Stich, Volker
    2019 IEEE CONFERENCE ON ENERGY CONVERSION (CENCON), 2019, : 95 - 99
  • [3] A Deep learning-based rainfall prediction for flood management
    Babar, Mohammad
    Rani, Maneeha
    Ali, Ihtisham
    2022 17TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES (ICET'22), 2022, : 196 - 199
  • [4] Adversarial Robustness for Deep Learning-Based Wildfire Prediction Models
    Ide, Ryo
    Yang, Lei
    FIRE-SWITZERLAND, 2025, 8 (02):
  • [5] Hybrid Deep Learning-based Models for Crop Yield Prediction
    Oikonomidis, Alexandros
    Catal, Cagatay
    Kassahun, Ayalew
    APPLIED ARTIFICIAL INTELLIGENCE, 2022, 36 (01)
  • [6] A data interpretation approach for deep learning-based prediction models
    Dadsetan, Saba
    Wu, Shandong
    MEDICAL IMAGING 2019: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2019, 10954
  • [7] A novel dataset sampling method for deep learning-based absorption prediction of FSS absorbers
    Wang, Nan
    Wan, Guobin
    Ding, Qimin
    Ma, Xin
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2023, 170
  • [8] A comprehensive review of deep learning-based models for heart disease prediction
    Zhou, Chunjie
    Dai, Pengfei
    Hou, Aihua
    Zhang, Zhenxing
    Liu, Li
    Li, Ali
    Wang, Fusheng
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (09)
  • [9] Deep learning-based feature engineering methods for improved building energy prediction
    Fan, Cheng
    Sun, Yongjun
    Zhao, Yang
    Song, Mengjie
    Wang, Jiayuan
    APPLIED ENERGY, 2019, 240 : 35 - 45
  • [10] Leveraging deep learning models for continuous glucose monitoring and prediction in diabetes management: towards enhanced blood sugar control
    Yousuff, A. R. Mohamed
    Hasan, M. Zainulabedin
    Anand, R.
    Babu, M. Rajasekhara
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024, 15 (06) : 2077 - 2084