Single-cell sequencing and multiple machine learning algorithms to identify key T-cell differentiation gene for progression of NAFLD cirrhosis to hepatocellular carcinoma

被引:0
|
作者
Wang, De-hua [1 ,2 ]
Ye, Li-hong [3 ]
Ning, Jing-yuan [4 ]
Zhang, Xiao-kuan [1 ]
Lv, Ting-ting [1 ]
Li, Zi-jie [1 ]
Wang, Zhi-yu [1 ]
机构
[1] Hebei Med Univ, Hosp 4, Dept Immuno Oncol, Shijiazhuang, Hebei, Peoples R China
[2] Hebei Med Univ, Hosp Shijiazhuang 5, Div Liver Dis, Shijiazhuang, Hebei, Peoples R China
[3] Hebei Med Univ, Hosp Shijiazhuang 5, Dept Pathol, Shijiazhuang, Hebei, Peoples R China
[4] Hebei Med Univ, Immunol Dept, Shijiazhuang, Hebei, Peoples R China
关键词
NAFLD cirrhosis; hepatocellular carcinoma; single cell; machine learning; LDHA; FATTY LIVER-DISEASE; LACTATE-DEHYDROGENASE; CANCER; METABOLISM; FIBROSIS;
D O I
10.3389/fmolb.2024.1301099
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Introduction: Hepatocellular carcinoma (HCC), which is closely associated with chronicinflammation, is the most common liver cancer and primarily involves dysregulated immune responses in the precancerous microenvironment. Currently, most studies have been limited to HCC incidence. However, the immunopathogenic mechanisms underlying precancerous lesions remain unknown.Methods: We obtained single-cell sequencing data (GSE136103) from two nonalcoholic fatty liver disease (NAFLD) cirrhosis samples and five healthy samples. Using pseudo-time analysis, we systematically identified five different T-cell differentiation states. Ten machine-learning algorithms were used in 81 combinations to integrate the frameworks and establish the best T-cell differentiation-related prognostic signature in a multi-cohort bulk transcriptome analysis.Results: LDHA was considered a core gene, and the results were validated using multiple external datasets. In addition, we validated LDHA expression using immunohistochemistry and flow cytometry.Conclusion: LDHA is a crucial marker gene in T cells for the progression of NAFLD cirrhosis to HCC.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Single-cell RNA sequencing reveals markers of disease progression in primary cutaneous T-cell lymphoma
    Katharina Rindler
    Constanze Jonak
    Natalia Alkon
    Felix M. Thaler
    Harald Kurz
    Lisa E. Shaw
    Georg Stingl
    Wolfgang Weninger
    Florian Halbritter
    Wolfgang M. Bauer
    Matthias Farlik
    Patrick M. Brunner
    Molecular Cancer, 20
  • [12] Single-cell RNA sequencing reveals markers of disease progression in primary cutaneous T-cell lymphoma
    Rindler, Katharina
    Jonak, Constanze
    Alkon, Natalia
    Thaler, Felix M.
    Kurz, Harald
    Shaw, Lisa E.
    Stingl, Georg
    Weninger, Wolfgang
    Halbritter, Florian
    Farlik, Matthias
    Brunner, Patrick M.
    EUROPEAN JOURNAL OF CANCER, 2021, 156 : S38 - S38
  • [13] Single-cell RNA sequencing analysis reveals potential key prognostic markers in hepatocellular carcinoma
    Cui, Heteng
    Yang, Wenyuan
    DISCOVER ONCOLOGY, 2024, 15 (01)
  • [14] Chord: an ensemble machine learning algorithm to identify doublets in single-cell RNA sequencing data
    Xiong, Ke-Xu
    Zhou, Han-Lin
    Lin, Cong
    Yin, Jian-Hua
    Kristiansen, Karsten
    Yang, Huan-Ming
    Li, Gui-Bo
    COMMUNICATIONS BIOLOGY, 2022, 5 (01)
  • [15] Chord: an ensemble machine learning algorithm to identify doublets in single-cell RNA sequencing data
    Ke-Xu Xiong
    Han-Lin Zhou
    Cong Lin
    Jian-Hua Yin
    Karsten Kristiansen
    Huan-Ming Yang
    Gui-Bo Li
    Communications Biology, 5
  • [16] Integration of Single-Cell RNA Sequencing and Bulk RNA Sequencing to Identify an Immunogenic Cell Death-Related 5-Gene Prognostic Signature in Hepatocellular Carcinoma
    Peng, Liqun
    Xu, Shaohua
    Xu, Jian-Liang
    JOURNAL OF HEPATOCELLULAR CARCINOMA, 2024, 11 : 879 - 900
  • [17] Single-Cell Sequencing and Machine Learning Integration to Identify Candidate Biomarkers in Psoriasis: INSIG1
    Zhou, Xiangnan
    Ning, Jingyuan
    Cai, Rui
    Liu, Jiayi
    Yang, Haoyu
    Bai, Yanping
    JOURNAL OF INFLAMMATION RESEARCH, 2024, 17 : 11485 - 11503
  • [18] A Systematic Evaluation of Supervised Machine Learning Algorithms for Cell Phenotype Classification Using Single-Cell RNA Sequencing Data
    Cao, Xiaowen
    Xing, Li
    Majd, Elham
    He, Hua
    Gu, Junhua
    Zhang, Xuekui
    FRONTIERS IN GENETICS, 2022, 13
  • [19] Identification of Kidney Cell Types in Single-Cell RNA Sequencing and Single-Nucleus RNA Sequencing Data Using Machine-Learning Algorithms
    Madapoosi, Siddharth S.
    Tisch, Adam
    Blough, Stephen A.
    Rosa, Jan S.
    Eddy, Sean
    Naik, Abhijit S.
    Limonte, Christine P.
    McCown, Phillip J.
    Menon, Rajasree
    Rosas, Sylvia E.
    Parikh, Chirag R.
    Mariani, Laura H.
    Kretzler, Matthias
    Mahfouz, Ahmed
    Alakwaa, Fadhl
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2024, 35 (10):
  • [20] TRANSLATING SINGLE-CELL TO BULK RNA SEQUENCING DATA TO IDENTIFY RESPONDERS TO CHECKPOINT INHIBITION IN ADVANCED HEPATOCELLULAR CARCINOMA
    Cappuyns, Sarah
    Esteban-Fabro, Roger
    Philips, Gino
    Vandecaveye, Vincent
    Pique-Gili, Marta
    Abril-Fornaguera, Jordi
    Haber, Philipp K.
    Verslype, Chris
    Van Cutsem, Eric
    Lambrechts, Diether
    Villanueva, Augusto
    Dekervel, Jeroen
    Llovet, Josep M.
    HEPATOLOGY, 2022, 76 : S1275 - S1276