Exploring the Adaptability of Exotic Safflower (Carthamus tinctorius L.) as a Viable Oilseed for Oil Scarcity

被引:0
|
作者
Sajid, Muhammad [1 ]
Munir, Hassan [1 ]
Rauf, Saeed [3 ]
Rasul, Fahd [1 ]
Ibtahaj, Iqra [2 ]
Ditta, Allah [4 ,5 ]
Al-Ashkar, Ibrahim [6 ]
Rajendran, Karthika [7 ]
Ratnasekera, Disna [8 ]
El Sabagh, Ayman [9 ]
机构
[1] Univ Agr Faisalabad, Dept Agron, Faisalabad 38000, Pakistan
[2] Univ Agr Faisalabad, Dept Bot, Faisalabad 38000, Pakistan
[3] Univ Sargodha, Univ Coll Agr, Dept Plant Breeding & Genet, Sargodha, Pakistan
[4] Shaheed Benazir Bhutto Univ Sheringal, Dept Environm Sci, Khyber Pakhtunkhwa 18000, Pakistan
[5] Univ Western Australia, Sch Biol Sci, 35 Stirling Highway, Perth, WA 6009, Australia
[6] King Saud Univ, Coll Food & Agr Sci, Plant Prod Dept, Riyadh, Saudi Arabia
[7] Vellore Inst Technol VIT, VIT Sch Agr Innovat & Adv Learning VAIAL, Vellore 632014, Tamil Nadu, India
[8] Univ Ruhuna, Fac Agr, Dept Agr Biol, Kamburupitiya 81000, Sri Lanka
[9] Univ Kafrelsheikh, Fac Agr, Dept Agron, Kafr Al Sheikh, Egypt
来源
关键词
safflower; germplasm; adaptability; yield; oil; fatty acid; SPRING SAFFLOWER; YIELD; SEED; TRAITS;
D O I
10.15244/pjoes/183566
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Safflower is a climate-resilient, quality oilseed with high resistance to water scarcity, soil salinity, and frost-prone areas, and it has a wide range of applications in daily life, ranging from food to pharmaceutical to industrial. Adapting high-quality oil-content-producing safflower cultivars can help reduce costs and reduce precious foreign exchange in countries like Pakistan. Exotic germplasm imported from the United States Department of Agriculture-Agricultural Research Service (USDA-ARS), consisting of 145 exotic safflower accessions and four local control cultivars were planted under semi-arid conditions in Faisalabad, Pakistan, during winter 2018-19 and 2019-20 season using an augmented design with unreplicated entries and replicated checks. Genotypic coefficient of variability (GCV) analysis revealed significant variation among the accessions of safflower for achene yield plant-1, heads plant-1, and branches plant-1. The Pearson correlation analysis revealed a significant but negative correlation between days to maturity and days to 50% flowering. The results revealed larger achene yields and earlier maturity in safflower planted in early winter. Biplot analysis found that five of the tested accessions had higher achene yield plant-1, while four of the other accessions had a higher percentage of oil than the control, which was the local safflower check-31, which had the highest oil content and best quality traits. Furthermore, the dendrogram revealed that four safflower accessions exhibited higher morphological uniqueness across the investigated traits during both years of study, which can be employed for future varietal development.
引用
收藏
页码:5843 / 5856
页数:14
相关论文
共 50 条
  • [31] Potassium efficiency of safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.)
    Gerendas, Joska
    Abbadi, Jehad
    Sattelmacher, Burkhard
    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, 2008, 171 (03) : 431 - 439
  • [32] PHOTOPERIODISM IN SAFFLOWER (CARTHAMUS-TINCTORIUS L)
    HOROWITZ, B
    BEECH, DF
    JOURNAL OF THE AUSTRALIAN INSTITUTE OF AGRICULTURAL SCIENCE, 1974, 40 (02): : 154 - 155
  • [33] Salt effects on shoot growth and essential oil yield and composition in safflower (Carthamus tinctorius L.)
    Harrathi, Jamel
    Attia, Houneida
    Neffati, Manel
    Hosni, Karim
    Marzouk, Brahim
    Lachaal, Moktar
    Karray-Bouraoui, Najoua
    JOURNAL OF ESSENTIAL OIL RESEARCH, 2013, 25 (06) : 482 - 487
  • [34] Agrobacterium-mediated genetic transformation of safflower (Carthamus tinctorius L.)
    K. Sri Shilpa
    V. Dinesh Kumar
    M. Sujatha
    Plant Cell, Tissue and Organ Culture (PCTOC), 2010, 103 : 387 - 401
  • [35] MORPHOLOGICAL AND ANATOMICAL CHARACTERIZATION OF SAFFLOWER (Carthamus tinctorius L.) HYPSOPHYLS AND LEAVES
    Dobrin, Aurora
    Popa, Vlad Ioan
    Potor, Constantin Daniel
    Georgescu, Mihaela Ioana
    SCIENTIFIC PAPERS-SERIES A-AGRONOMY, 2021, 64 (01): : 681 - 686
  • [36] EMS-induced cytomictic variability in safflower (Carthamus tinctorius L.)
    P. Srivastava
    G. Kumar
    Cytology and Genetics, 2011, 45 : 240 - 244
  • [37] GENETIC DIVERSITY IN CARTHAMUS TINCTORIUS (ASTERACEAE; SAFFLOWER), AN UNDERUTILIZED OILSEED CROP
    Pearl, Stephanie A.
    Burke, John M.
    AMERICAN JOURNAL OF BOTANY, 2014, 101 (10) : 1640 - 1650
  • [38] Enhancing oleic acid and oil content in low oil and oleic type Indian safflower (Carthamus tinctorius L.)
    Kammili, Anjani
    Yadav, Praduman
    INDUSTRIAL CROPS AND PRODUCTS, 2022, 175
  • [39] Crop water stress index assessment of safflower (Carthamus tinctorius L.)
    Gultas, Hueseyin Tevfik
    SCIENTIA AGRICOLA, 2025, 82
  • [40] Radiation-Induced Reciprocal Translocations in Safflower (Carthamus tinctorius L.)
    Verma, Rakesh Chandra
    Shrivastava, Pratibha
    CYTOLOGIA, 2014, 79 (04) : 541 - 545