QCA-based fault-tolerant XOR Gate for reliable computing with high thermal stability

被引:1
|
作者
Naz, Syed Farah [1 ]
Shah, Ambika Prasad [1 ]
Ahmed, Suhaib [2 ]
机构
[1] Indian Inst Technol Jammu, Elect Engn Dept, Jammu, J&K, India
[2] Model Inst Engn & Technol, Dept Elect & Commun Engn, Jammu, J&K, India
关键词
XOR gate; nanoelectronics; QCA; reliability; fault-tolerance; thermal stability; POWER DISSIPATION; DESIGN; CIRCUITS;
D O I
10.1088/1402-4896/ad48e8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The XOR gate is an essential element in the design of digital circuits due to its versatility and usefulness. The design of XOR gate in this paper is based on Quantum-dot Cellular Automata (QCA) 2D planner technology with no line-to-line intersections. The output amplitude is improved by redundant cell-based design, which also helped reliability and fault tolerance outperform. The proposed XOR gate achieves fault tolerance to single-cell addition and missing-cell defects from 68.48% to 95.33%. In addition, the proposed XOR gate is also fault-tolerant against multiple-cell missing defects, as verified from the simulations. Furthermore, high thermal stability makes the circuit reliable for QCA-based digital design applications. The digital design applications such as 4-bit B2G code converter and a 4-bit parity checker are designed from this XOR gate, utilizing 438 and 414 cells, respectively. This demonstrates its effectiveness in designing fault resilient and reliable circuit designs for various applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Fault-tolerant design and analysis of QCA-based circuits
    Singh, Gurmohan
    Raj, Balwinder
    Sarin, Rakesh K.
    IET CIRCUITS DEVICES & SYSTEMS, 2018, 12 (05) : 638 - 644
  • [2] A fault-tolerant QCA-based convolution encoder for robust data transmission
    Vaish, Utkarsh
    Abraham, Jeswin Sam
    Kumar, Vobulapuram Ramesh
    NANO COMMUNICATION NETWORKS, 2024, 40
  • [3] A Fault-Tolerant and Efficient XOR Structure for Modular Design of Complex QCA Circuits
    Poorhosseini, Mehrdad
    Hejazi, Ali Reza
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2018, 27 (07)
  • [4] Fault-Tolerant and Reliable Computation in Cloud Computing
    Deng, Jing
    Huang, Scott C. -H.
    Han, Yunghsiang S.
    Deng, Julia H.
    2010 IEEE GLOBECOM WORKSHOPS, 2010, : 1601 - 1605
  • [5] Fault-Tolerant Architecture for Reliable Integrated Gate Drivers
    Kim, Jongbin
    Chung, Hoon-Ju
    Lee, Seung-Woo
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2019, 7 (01): : 1038 - 1046
  • [8] Design and Analysis of a New Fault-Tolerant QCA-based Nano-Scale Circuit for Morphological Operations in Image Processing
    Lin, Hongkai
    Chen, Dong
    An, Dong
    Ahmed Alyousuf, Farah Qasim
    IETE JOURNAL OF RESEARCH, 2024, 70 (08) : 6913 - 6919
  • [9] Fault-tolerant computing based on mach
    Babaoglu, Ozalp
    Operating Systems Review (ACM), 1990, 24 (01): : 27 - 39
  • [10] Design of Fault-Tolerant and Thermally Stable XOR Gate in Quantum dot Cellular Automata
    Naz, Syed Farah
    Shah, Ambika Prasad
    Ahmed, Suhaib
    Girard, Patrick
    Waltl, Michael
    2021 IEEE EUROPEAN TEST SYMPOSIUM (ETS 2021), 2021,