An end-to-end gait recognition system for covariate conditions using custom kernel CNN

被引:1
|
作者
Ali, Babar [1 ]
Bukhari, Maryam [1 ]
Maqsood, Muazzam [1 ]
Moon, Jihoon [2 ]
Hwang, Eenjun [3 ]
Rho, Seungmin [4 ]
机构
[1] COMSATS Univ Islamabad, Dept Comp Sci, Attock Campus, Islamabad, Pakistan
[2] Soonchunhyang Univ, Dept AI & Big Data, Asan 31538, South Korea
[3] Korea Univ, Sch Elect Engn, Seoul 02841, South Korea
[4] Chung Ang Univ, Dept Ind Secur, Seoul 06974, South Korea
关键词
Gait recognition; Covariate factors; Deep learning; Convolutional neural networks; Custom kernel CNN; NEURAL-NETWORKS; IDENTIFICATION;
D O I
10.1016/j.heliyon.2024.e32934
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gait recognition is the identification of individuals based on how they walk. It can identify an individual of interest without their intervention, making it better suited for surveillance from afar. Computer-aided silhouette-based gait analysis is frequently employed due to its efficiency and effectiveness. However, covariate conditions have a significant influence on individual recognition because they conceal essential features that are helpful in recognizing individuals from their walking style. To address such issues, we proposed a novel deep-learning framework to tackle covariate conditions in gait by proposing regions subject to covariate conditions. The features extracted from those regions will be neglected to keep the model's performance effective with custom kernels. The proposed technique sets aside static and dynamic areas of interest, where static areas contain covariates, and then features are learnt from the dynamic regions unaffected by covariates to effectively recognize individuals. The features were extracted using three customized kernels, and the results were concatenated to produce a fused feature map. Afterward, CNN learns and extracts the features from the proposed regions to recognize an individual. The suggested approach is an end-to-end system that eliminates the requirement for manual region proposal and feature extraction, which would improve gait-based identification of individuals in real-world scenarios. The experimentation is performed on publicly available dataset i.e. CASIA A, and CASIA C. The findings indicate that subjects wearing bags produced 90 % accuracy, and subjects wearing coats produced 58 % accuracy. Likewise, recognizing individuals with different walking speeds also exhibited excellent results, with an accuracy of 94 % for fast and 96 % for slow-paced walk patterns, which shows improvement compared to previous deep learning methods.(c) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Steganalysis Using Unsupervised End-to-end CNN Fused with Residual Image
    Wu, Yao
    Yi, Junkai
    Li, Hui
    2018 11TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2018), 2018,
  • [22] CNN-based Multichannel End-to-End Speech Recognition for Everyday Home Environments
    Yalta, Nelson
    Watanabe, Shinji
    Hori, Takaaki
    Nakadai, Kazuhiro
    Ogata, Tetsuya
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [23] A focus module-based lightweight end-to-end CNN framework for voiceprint recognition
    Karthikeyan Velayuthapandian
    Suja Priyadharsini Subramoniam
    Signal, Image and Video Processing, 2023, 17 : 2817 - 2825
  • [24] Deep Covariance Feature and CNN-based End-to-End Masked Face Recognition
    Junayed, Masum Shah
    Sadeghzadeh, Arezoo
    Islam, Md Baharul
    2021 16TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2021), 2021,
  • [25] A focus module-based lightweight end-to-end CNN framework for voiceprint recognition
    Velayuthapandian, Karthikeyan
    Subramoniam, Suja Priyadharsini
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (06) : 2817 - 2825
  • [26] A Low-Cost End-to-End sEMG-Based Gait Sub-Phase Recognition System
    Luo, Ruiming
    Sun, Shouqian
    Zhang, Xianfu
    Tang, Zhichuan
    Wang, Weide
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2020, 28 (01) : 267 - 276
  • [27] End-to-End Kernel Learning with Supervised Convolutional Kernel Networks
    Mairal, Julien
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [28] Empirical Assessment of End-to-End Iris Recognition System Capacity
    Das, Priyanka
    Plesh, Richard
    Talreja, Veeru
    Schmid, Natalia A.
    Valenti, Matthew
    Skufca, Joseph
    Schuckers, Stephanie
    IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE, 2023, 5 (02): : 154 - 169
  • [29] A Lightweight End-to-End Speech Recognition System on Embedded Devices
    Wang, Yu
    Nishizaki, Hiromitsu
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2023, E106D (07) : 1230 - 1239
  • [30] End-to-End Audiovisual Speech Recognition System With Multitask Learning
    Tao, Fei
    Busso, Carlos
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 1 - 11