Electricity Behavior Modeling and Anomaly Detection Services Based on a Deep Variational Autoencoder Network

被引:1
|
作者
Lin, Rongheng [1 ]
Chen, Shuo [1 ]
He, Zheyu [1 ]
Wu, Budan [1 ]
Zou, Hua [1 ]
Zhao, Xin [2 ]
Li, Qiushuang [2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Comp Sci, Natl Pilot Software Engn Sch, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
[2] State Grid Shandong Elect Power Co, Econ & Res Inst, Jinan 250021, Peoples R China
关键词
load pattern; anomaly detection; autoencoder network;
D O I
10.3390/en17163904
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Understanding electrical load profiles and detecting anomaly behaviors are important to the smart grid system. However, current load identification and anomaly analysis are based on static analysis, and less consideration is given to anomaly findings under load change conditions. This paper proposes a deep variational autoencoder network (DVAE) for load profiles, along with anomaly analysis services, and introduces auto-time series data updating strategies based on sliding window adjustment. DVAE can help reconstruct the load curve and measure the difference between the original and the newer curve, whose measurement indicators include reconstruction probability and Pearson similarity. Meanwhile, the design of the sliding window strategy updates the data and DVAE model in a time-series manner. Experiments were carried out based on datasets from the U.S. Department of Energy and from Southeast China. The results showed that the proposed services could result in a 5% improvement in the AUC value, which helps to identify the anomaly behavior.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Deep Learning Autoencoder based Anomaly Detection Model on 4G Network Performance Data
    Ahasan, Md Rakibul
    Akram, Mohammad Rubbyat
    Alam, Md Golam Rabiul
    Haque, Mirza Sanita
    Momen, Mohammed Fahim
    2022 IEEE WORLD AI IOT CONGRESS (AIIOT), 2022, : 232 - 237
  • [32] Acoustic Anomaly Detection of Machinery using Autoencoder based Deep Learning
    Chinnasamy, Mark Damien
    Sumbwanyambe, Mbuyu
    Hlalele, Tlotlollo Sidwell
    2024 32ND SOUTHERN AFRICAN UNIVERSITIES POWER ENGINEERING CONFERENCE, SAUPEC, 2024, : 212 - 217
  • [33] Trust Management for Deep Autoencoder based Anomaly Detection in Social IoT
    Rashmi, M. R.
    Raj, C. Vidya
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (01) : 981 - 989
  • [34] A Lightweight Deep Autoencoder-based Approach for Unsupervised Anomaly Detection
    Dlamini, Gcinizwe
    Galieva, Rufina
    Fahim, Muhammad
    2019 IEEE/ACS 16TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA 2019), 2019,
  • [35] Development of deep autoencoder-based anomaly detection system for HANARO
    Ryu, Seunghyoung
    Jeon, Byoungil
    Seo, Hogeon
    Lee, Minwoo
    Shin, Jin-Won
    Yu, Yonggyun
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2023, 55 (02) : 475 - 483
  • [36] Early multi-cancer detection through deep learning: An anomaly detection approach using Variational Autoencoder
    Sado, Innocent Tatchum
    Fitime, Louis Fippo
    Pelap, Geraud Fokou
    Tinku, Claude
    Meudje, Gaelle Mireille
    Bouetou, Thomas
    JOURNAL OF BIOMEDICAL INFORMATICS, 2024, 160
  • [37] Multivariate time series anomaly detection with variational autoencoder and spatial-temporal graph network
    Guan, Siwei
    He, Zhiwei
    Ma, Shenhui
    Gao, Mingyu
    COMPUTERS & SECURITY, 2024, 142
  • [38] Unsupervised Anomaly detection of LM Guide Using Variational Autoencoder
    Kim, Min Su
    Yun, Jong Pil
    Lee, Suwoong
    Park, PooGyeon
    2019 11TH INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING (ATEE), 2019,
  • [39] Improved Variational Autoencoder Anomaly Detection in Time Series Data
    Yokkampon, Umaporn
    Chumkamon, Sakmongkon
    Mowshowitz, Abbe
    Fujisawa, Ryusuke
    Hayashi, Eiji
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 82 - 87
  • [40] Anomaly detection in facial skin temperature using variational autoencoder
    Ayaka Masaki
    Kent Nagumo
    Bikash Lamsal
    Kosuke Oiwa
    Akio Nozawa
    Artificial Life and Robotics, 2021, 26 : 122 - 128