Dynamic Time Warping Constraints for Semiconductor Processing

被引:0
|
作者
Owens, Rachel [1 ,2 ]
Sun, Fan-Keng [1 ,2 ]
Venditti, Christopher [3 ]
Blake, Daniel [3 ]
Dillon, Jack [3 ]
Boning, Duane [1 ,2 ]
机构
[1] MIT, MTL, Cambridge, MA 02139 USA
[2] MIT, EECS, Cambridge, MA 02139 USA
[3] Analog Devices Inc, Wilmington, MA USA
关键词
dynamic time warping; semiconductor manufacturing; data preprocessing; anomaly detection;
D O I
10.1109/ASMC61125.2024.10545476
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a new method for preprocessing semiconductor fabrication sensor signals that improves fault detection model performance. Machine learning has allowed for advances in fault detection and classification, but there are still difficulties in applying these techniques to the monitoring of fabrication processes when some variation in processing time is acceptable. The new method uses domain knowledge - specifically, process recipe steps - to create constraints that better align signals along the time dimension, which addresses this problem of nonlinear signal alignment.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Branch-and-bound dynamic time warping
    Jang, S. W.
    Park, Y. J.
    Kim, G. Y.
    ELECTRONICS LETTERS, 2010, 46 (20) : 1374 - 1376
  • [42] SSDTW: Shape segment dynamic time warping
    Hong, Jae Yeol
    Park, Seung Hwan
    Baek, Jun-Geol
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 150
  • [43] Learning Discriminative Prototypes with Dynamic Time Warping
    Chang, Xiaobin
    Tung, Frederick
    Mori, Greg
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 8391 - 8400
  • [44] Non-Markovian Dynamic Time Warping
    Uchida, Seiichi
    Fukutomi, Masahiro
    Ogawara, Koichi
    Feng, Yaokai
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 2294 - 2297
  • [45] Fault diagnosis using dynamic time warping
    Rajshekhar
    Gupta, Ankur
    Samanta, A. N.
    Kulkarni, B. D.
    Jayaraman, V. K.
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2007, 4815 : 57 - +
  • [46] Dynamic time warping of spectroscopic BATCH data
    Ramaker, HJ
    van Sprang, ENM
    Westerhuis, JA
    Smilde, AK
    ANALYTICA CHIMICA ACTA, 2003, 498 (1-2) : 133 - 153
  • [47] Parallelization of Dynamic Time Warping on a Heterogeneous Platform
    Zheng, Yao
    Xiao, Limin
    Tang, Wenqi
    Shang, Lihong
    Yao, Guangchao
    Ruan, Li
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2014, E97A (11) : 2258 - 2262
  • [48] Mammogram classification using dynamic time warping
    Syed Jamal Safdar Gardezi
    Ibrahima Faye
    Jose M. Sanchez Bornot
    Nidal Kamel
    Mohammad Hussain
    Multimedia Tools and Applications, 2018, 77 : 3941 - 3962
  • [49] Robust voicing estimation with dynamic time warping
    Wang, T
    Cuperman, V
    PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 533 - 536
  • [50] Local Feature Based Dynamic Time Warping
    Zhang, Zheng
    Tang, Liang
    Tang, Ping
    2014 INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2014, : 425 - 429