MonoSample: Synthetic 3D Data Augmentation Method in Monocular 3D Object Detection

被引:0
|
作者
Qiao, Junchao [1 ]
Liu, Biao [1 ]
Yang, Jiaqi [1 ]
Wang, Baohua [1 ]
Xiu, Sanmu [1 ]
Du, Xin [1 ]
Nie, Xiaobo [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Elect Engn & Automat, Beijing 100082, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Three-dimensional displays; Training; Object detection; Data augmentation; Solid modeling; Uncertainty; Laser radar; Computer vision for transportation; deep learning for visual perception; object detection; VISION;
D O I
10.1109/LRA.2024.3414272
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In the context of autonomous driving, it is both critical and challenging to locate 3D objects by using a calibrated RGB image. Current methods typically utilize heteroscedastic aleatoric uncertainty loss to regress the depth of objects, thereby reducing the impact of noisy input while also ensuring the reliability of depth predictions. However, experimentation reveals that uncertainty loss can also lead to serious overfitting issue and performance degradation. To address this issue, we propose MonoSample, an augmentation method that collects samples from the dataset and places them randomly during training. MonoSample takes into account the occlusion relationships and applies strict restrictions to ensure the verisimilitude of the enhanced scenes. Furthermore, MonoSample avoids the complex conversion process between 2D and 3D, thereby enabling the extraction of a large number of samples and efficient operation. Experiments on different models have verified its effectiveness. Leveraging MonoSample in DID-M3D, our model achieves state-of-the-art (SOTA) performance on the KITTI 3D object detection benchmark.
引用
收藏
页码:7326 / 7332
页数:7
相关论文
共 50 条
  • [21] Dense-JANet for Monocular 3D Object Detection
    Shang, Xiaoqing
    Cheng, Zhiwei
    Shi, Su
    Cheng, Zhuanghao
    Huang, Hongcheng
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [22] Monocular 3D Object Detection from Roadside Infrastructure
    Huang, Delu
    Wen, Feng
    2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, : 1672 - 1677
  • [23] MonoCD: Monocular 3D Object Detection with Complementary Depths
    Yan, Longfei
    Yan, Pei
    Xiong, Shengzhou
    Xiang, Xuanyu
    Tan, Yihua
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 10248 - 10257
  • [24] Monocular 3D object detection for an indoor robot environment
    Kim, Jiwon
    Lee, GiJae
    Kim, Jun-Sik
    Kim, Hyunwoo J.
    Kim, KangGeon
    2020 29TH IEEE INTERNATIONAL CONFERENCE ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION (RO-MAN), 2020, : 438 - 445
  • [25] A New Monocular 3D Object Detection with Neural Network
    Hong, Weijie
    Liu, Yiguang
    Zheng, Yunan
    Wang, Ying
    Shi, Xuelei
    PATTERN RECOGNITION AND COMPUTER VISION (PRCV 2018), PT IV, 2018, 11259 : 174 - 185
  • [26] 3D Visual Object Detection from Monocular Images
    Wang, Qiaosong
    Rasmussen, Christopher
    ADVANCES IN VISUAL COMPUTING, ISVC 2019, PT I, 2020, 11844 : 168 - 180
  • [27] Monocular 3D object detection for construction scene analysis
    Shen, Jie
    Jiao, Lang
    Zhang, Cong
    Peng, Keran
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2024, 39 (09) : 1370 - 1389
  • [28] Delving into Localization Errors for Monocular 3D Object Detection
    Ma, Xinzhu
    Zhang, Yinmin
    Xu, Dan
    Zhou, Dongzhan
    Yi, Shuai
    Li, Haojie
    Ouyang, Wanli
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 4719 - 4728
  • [29] GPro3D: Deriving 3D BBox from ground plane in monocular 3D object detection
    Yang, Fan
    Xu, Xinhao
    Chen, Hui
    Guo, Yuchen
    He, Yuwei
    Ni, Kai
    Ding, Guiguang
    NEUROCOMPUTING, 2023, 562
  • [30] Competition for roadside camera monocular 3D object detection
    Jia, Jinrang
    Shi, Yifeng
    Qu, Yuli
    Wang, Rui
    Xu, Xing
    Zhang, Hai
    NATIONAL SCIENCE REVIEW, 2023, 10 (06)