Memory-Based Contrastive Learning with Optimized Sampling for Incremental Few-Shot Semantic Segmentation

被引:0
|
作者
Zhang, Yuxuan [1 ,2 ]
Shi, Miaojing [3 ]
Su, Taiyi [1 ,2 ]
Wang, Hanli [1 ,2 ]
机构
[1] Tongji Univ, Dept Comp Sci & Technol, Shanghai, Peoples R China
[2] Tongji Univ, Minist Educ, Key Lab Embedded Syst & Serv Comp, Shanghai, Peoples R China
[3] Tongji Univ, Dept Control Sci & Engn, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
incremental learning; few-shot learning; semantic segmentation; contrastive learning; dynamic memory;
D O I
10.1109/ISCAS58744.2024.10558084
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Incremental few-shot semantic segmentation (IFSS) aims to incrementally expand a semantic segmentation model's ability to identify new classes based on few samples. However, it grapples with the dual challenges of catastrophic forgetting (due to feature drift in old classes) and overfitting (triggered by inadequate samples in new classes). To address these issues, a novel approach is proposed to integrate pixel-wise and region-wise contrastive learning, complemented by an optimized example and anchor sampling strategy. The proposed method incorporates a region memory and pixel memory designed to explore the high-dimensional embedding space more effectively. The memory, retaining the feature embeddings of known classes, facilitates the calibration and alignment of seen class features during the learning process of new classes. To further mitigate overfitting, the proposed approach implements an optimized example and anchor sampling strategy. Extensive experiments show the competitive performance of the proposed method. The source code of this work can be found in https://mic.tongji.edu.cn.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Contrastive Learning for Prompt-Based Few-Shot Language Learners
    Jian, Yiren
    Gao, Chongyang
    Vosoughi, Soroush
    NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 5577 - 5587
  • [42] Dual Contrastive Learning with Anatomical Auxiliary Supervision for Few-Shot Medical Image Segmentation
    Wu, Huisi
    Xiao, Fangyan
    Liang, Chongxin
    COMPUTER VISION, ECCV 2022, PT XX, 2022, 13680 : 417 - 434
  • [43] Self-support Few-Shot Semantic Segmentation
    Fan, Qi
    Pei, Wenjie
    Tai, Yu-Wing
    Tang, Chi-Keung
    COMPUTER VISION, ECCV 2022, PT XIX, 2022, 13679 : 701 - 719
  • [44] Query semantic reconstruction for background in few-shot segmentation
    Haoyan Guan
    Michael Spratling
    The Visual Computer, 2024, 40 (2) : 799 - 810
  • [45] Few-Shot Semantic Segmentation of Strip Steel Surface Defects Based on Meta-Learning
    Feng H.
    Song K.-C.
    Cui W.-Q.
    Yan Y.-H.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2024, 45 (03): : 354 - 360
  • [46] Defect Detection for Wear Debris Based on Few-Shot Contrastive Learning
    Li, Hang
    Li, Li
    Wang, Hongbing
    APPLIED SCIENCES-BASEL, 2022, 12 (23):
  • [47] Query semantic reconstruction for background in few-shot segmentation
    Guan, Haoyan
    Spratling, Michael
    VISUAL COMPUTER, 2024, 40 (02): : 799 - 810
  • [48] Few-Shot Semantic Segmentation via Mask Aggregation
    Ao, Wei
    Zheng, Shunyi
    Meng, Yan
    Yang, Yang
    NEURAL PROCESSING LETTERS, 2024, 56 (02)
  • [49] Dynamic Extension Nets for Few-shot Semantic Segmentation
    Liu, Lizhao
    Cao, Junyi
    Liu, Minqian
    Guo, Yong
    Chen, Qi
    Tan, Mingkui
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 1441 - 1449
  • [50] Few-Shot Semantic Segmentation for Complex Driving Scenes
    Zhou, Jingxing
    Chen, Ruei-Bo
    Beyerer, Juergen
    2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, : 695 - 702