High-Entropy and Multiphase Cathode Materials for Sodium-Ion Batteries

被引:9
|
作者
Li, Ranran [1 ]
Qin, Xuan [2 ]
Li, Xiaolei [1 ]
Zhu, Jianxun [1 ]
Zheng, Li-Rong [3 ]
Li, Zhongtao [4 ]
Zhou, Weidong [1 ]
机构
[1] Beijing Univ Chem Technol, Beijing Adv Innovat Ctr Soft Matter Sci & Engn, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Engn Res Ctr Elastomer Mat Energy Conservat & Reso, State Key Lab Organ Inorgan Composites, Minist Educ, Beijing 100029, Peoples R China
[3] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
[4] China Univ Petr East China, State Key Lab Heavy Oil Proc, Coll Chem Engn, Qingdao 266580, Peoples R China
基金
中国国家自然科学基金;
关键词
high-entropy; layered metal-oxides cathode; multiphase; Na-ion batteries; weighted average of ionic radius; LAYERED OXIDE; EVOLUTION; ENERGY;
D O I
10.1002/aenm.202400127
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cycling stability is the biggest challenge for cathodes of sodium-ion batteries (SIBs), which is directly affected by the structure design. Herein, the combination of high-entropy (HE) and multiphase structure is demonstrated to be helpful for maintaining the structure and improving the cycling stability. In the Ni/Mn/Cu/Ti/Sn five-component HE multiphase cathode, the multiple elements at transition metal sites can enlarge the lattice and stabilize the structure simultaneously without causing an obvious capacity drop, achieving the synergistic effect of multi-cations. In the HE cathodes consisting of P2 and O3 phases, the harmful phase transition in high-voltage is suppressed and the cycling performance is improved. A capacity retention of 77.3 mAh g-1 after 300 cycles is delivered, and an improved rate performance of 88.7 mAh g-1 at 750 mA g-1 is observed, better than that of the low-entropy multiphase cathode(P2 and O3) and the HE oxide single O3-phase cathode. The weighted average ionic radius(WAIR) of all transition metals is demonstrated critical for the formation of the phase composition in HE composites. Through comparing a series of HE and multiphase cathodes, an empirical range of WAIR is obtained, which shows guidance for the design of other cathode materials. Benefiting from the formation of high-entropy(HE) and multiphase structures with the introduction of multi-transition metals, obviously improved performance is obtained compared with low-entropy multiphase structure and HE single-phase cathode. The weighted average ionic radius of multi-transition metals is demonstrated critical for the phase formation in HE multiphase cathodes. image
引用
收藏
页数:14
相关论文
共 50 条
  • [41] High-Entropy and Superstructure-Stabilized Layered Oxide Cathodes for Sodium-Ion Batteries
    Yao, Libing
    Zou, Peichao
    Wang, Chunyang
    Jiang, Jiahao
    Ma, Lu
    Tan, Sha
    Beyer, Kevin A.
    Xu, Feng
    Hu, Enyuan
    Xin, Huolin L.
    ADVANCED ENERGY MATERIALS, 2022, 12 (41)
  • [42] Recent Advances and Prospects of Cathode Materials for Sodium-Ion Batteries
    Xiang, Xingde
    Zhang, Kai
    Chen, Jun
    ADVANCED MATERIALS, 2015, 27 (36) : 5343 - 5364
  • [43] Recent Advances in Phosphate Cathode Materials for Sodium-ion Batteries
    Cao, Xinxin
    Zhou, Jiang
    Pan, Anqiang
    Liang, Shuquan
    ACTA PHYSICO-CHIMICA SINICA, 2020, 36 (05)
  • [44] A review on pyrophosphate framework cathode materials for sodium-ion batteries
    Niu, Yubin
    Zhang, Yan
    Xu, Maowen
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (25) : 15006 - 15025
  • [45] An Overview of Mixed Polyanionic Cathode Materials for Sodium-Ion Batteries
    Senthilkumar, Baskar
    Murugesan, Chinnasamy
    Sharma, Lalit
    Lochab, Shubham
    Barpanda, Prabeer
    SMALL METHODS, 2019, 3 (04)
  • [46] The Role of Fluorine in Polyanionic Cathode Materials for Sodium-Ion Batteries
    Hu, Jinqiao
    Zhao, Wenxi
    Wang, Yuqiu
    Jiang, Shikang
    Yu, Binkai
    Dou, Shi-Xue
    Liu, Hua-Kun
    Chen, Shuangqiang
    Zhang, Kai
    Zhou, Limin
    Chen, Mingzhe
    SMALL METHODS, 2025,
  • [47] Polyanion-type cathode materials for sodium-ion batteries
    Jin, Ting
    Li, Huangxu
    Zhu, Kunjie
    Wang, Peng-Fei
    Liu, Pei
    Jiao, Lifang
    CHEMICAL SOCIETY REVIEWS, 2020, 49 (08) : 2342 - 2377
  • [48] Perspective: Design of cathode materials for sustainable sodium-ion batteries
    Baharak Sayahpour
    Hayley Hirsh
    Saurabh Parab
    Long Hoang Bao Nguyen
    Minghao Zhang
    Ying Shirley Meng
    MRS Energy & Sustainability, 2022, 9 : 183 - 197
  • [49] Perspective: Design of cathode materials for sustainable sodium-ion batteries
    Sayahpour, Baharak
    Hirsh, Hayley
    Parab, Saurabh
    Nguyen, Long Hoang Bao
    Zhang, Minghao
    Meng, Ying Shirley
    MRS ENERGY & SUSTAINABILITY, 2022, 9 (02) : 183 - 197
  • [50] Mainstream Optimization Strategies for Cathode Materials of Sodium-Ion Batteries
    Xu, Huan
    Yan, Qi
    Yao, Wenjiao
    Lee, Chun-Sing
    Tang, Yongbing
    SMALL STRUCTURES, 2022, 3 (04):