High-Entropy and Multiphase Cathode Materials for Sodium-Ion Batteries

被引:9
|
作者
Li, Ranran [1 ]
Qin, Xuan [2 ]
Li, Xiaolei [1 ]
Zhu, Jianxun [1 ]
Zheng, Li-Rong [3 ]
Li, Zhongtao [4 ]
Zhou, Weidong [1 ]
机构
[1] Beijing Univ Chem Technol, Beijing Adv Innovat Ctr Soft Matter Sci & Engn, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Engn Res Ctr Elastomer Mat Energy Conservat & Reso, State Key Lab Organ Inorgan Composites, Minist Educ, Beijing 100029, Peoples R China
[3] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
[4] China Univ Petr East China, State Key Lab Heavy Oil Proc, Coll Chem Engn, Qingdao 266580, Peoples R China
基金
中国国家自然科学基金;
关键词
high-entropy; layered metal-oxides cathode; multiphase; Na-ion batteries; weighted average of ionic radius; LAYERED OXIDE; EVOLUTION; ENERGY;
D O I
10.1002/aenm.202400127
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cycling stability is the biggest challenge for cathodes of sodium-ion batteries (SIBs), which is directly affected by the structure design. Herein, the combination of high-entropy (HE) and multiphase structure is demonstrated to be helpful for maintaining the structure and improving the cycling stability. In the Ni/Mn/Cu/Ti/Sn five-component HE multiphase cathode, the multiple elements at transition metal sites can enlarge the lattice and stabilize the structure simultaneously without causing an obvious capacity drop, achieving the synergistic effect of multi-cations. In the HE cathodes consisting of P2 and O3 phases, the harmful phase transition in high-voltage is suppressed and the cycling performance is improved. A capacity retention of 77.3 mAh g-1 after 300 cycles is delivered, and an improved rate performance of 88.7 mAh g-1 at 750 mA g-1 is observed, better than that of the low-entropy multiphase cathode(P2 and O3) and the HE oxide single O3-phase cathode. The weighted average ionic radius(WAIR) of all transition metals is demonstrated critical for the formation of the phase composition in HE composites. Through comparing a series of HE and multiphase cathodes, an empirical range of WAIR is obtained, which shows guidance for the design of other cathode materials. Benefiting from the formation of high-entropy(HE) and multiphase structures with the introduction of multi-transition metals, obviously improved performance is obtained compared with low-entropy multiphase structure and HE single-phase cathode. The weighted average ionic radius of multi-transition metals is demonstrated critical for the phase formation in HE multiphase cathodes. image
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Research progress of high-entropy cathode materials for sodium-ion batteries
    Wu, Fan
    Wu, Shaoyang
    Ye, Xin
    Ren, Yurong
    Wei, Peng
    CHINESE CHEMICAL LETTERS, 2025, 36 (04)
  • [2] High-entropy cathode materials for sodium-ion batteries: Correlating synthesis, crystal structure and electrochemical properties
    El Moutchou, Soraia
    Sabi, Noha
    Oueldna, Nouredine
    Trabadelo, Vera
    Aziam, Hasna
    Ben Youcef, Hicham
    JOURNAL OF ENERGY STORAGE, 2024, 98
  • [3] High-Entropy Layered Oxide Cathode Materials with Moderated Interlayer Spacing and Enhanced Kinetics for Sodium-Ion Batteries
    Huang, Zefu
    Wang, Shijian
    Guo, Xin
    Marlton, Frederick
    Fan, Yameng
    Pang, Wei-Kong
    Huang, Tao
    Xiao, Jun
    Li, Dongfang
    Liu, Hao
    Gu, Qinfen
    Yang, Cheng-Chieh
    Dong, Chung-Li
    Sun, Bing
    Wang, Guoxiu
    ADVANCED MATERIALS, 2024, 36 (50)
  • [4] Investigation of high-entropy Prussian blue analog as cathode material for aqueous sodium-ion batteries
    Zhao, Xu
    Xing, Zhaohui
    Huang, Chengde
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (42) : 22835 - 22844
  • [5] High-Entropy Layered Oxide Cathodes for Sodium-Ion Batteries
    Zhao, Chenglong
    Ding, Feixiang
    Lu, Yaxiang
    Chen, Liquan
    Hu, Yong-Sheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (01) : 264 - 269
  • [6] A high-entropy layered P2-type cathode with high stability for sodium-ion batteries
    Liu, Hongfeng
    Wang, Yingshuai
    Ding, Xiangyu
    Wang, Yusong
    Wu, Feng
    Gao, Hongcai
    SUSTAINABLE ENERGY & FUELS, 2024, 8 (06) : 1304 - 1313
  • [7] Biphasic high-entropy layered oxide as a stable and high-rate cathode for sodium-ion batteries
    Mu, Jinxiao
    Cai, Tianxun
    Dong, Wujie
    Zhou, Ce
    Han, Zhen
    Huang, Fuqiang
    CHEMICAL ENGINEERING JOURNAL, 2023, 471
  • [8] A High-Entropy Intergrowth Layered-Oxide Cathode with Enhanced Stability for Sodium-Ion Batteries
    Pang, Yanfei
    Wang, Yingshuai
    Jiang, Chunyu
    Ding, Xiangyu
    Xin, Yuhang
    Zhou, Qingbo
    Chen, Baorui
    Liu, Hongfeng
    Singh, Preetam
    Wang, Qianchen
    Gao, Hongcai
    CHEMSUSCHEM, 2024, 17 (23)
  • [9] High-voltage stabilized high-entropy oxyfluoride cathode for high-rate sodium-ion batteries
    He, Li
    Feng, Tao
    Wu, Qingqing
    Cao, Yang
    Song, Fangxiang
    RARE METALS, 2025,
  • [10] P2-type layered high-entropy oxides as sodium-ion cathode materials
    Wang, Junbo
    Dreyer, Soeren L.
    Wang, Kai
    Ding, Ziming
    Diemant, Thomas
    Karkera, Guruprakash
    Ma, Yanjiao
    Sarkar, Abhishek
    Zhou, Bei
    Gorbunov, Mikhail, V
    Omar, Ahmad
    Mikhailova, Daria
    Presser, Volker
    Fichtner, Maximilian
    Hahn, Horst
    Brezesinski, Torsten
    Breitung, Ben
    Wang, Qingsong
    MATERIALS FUTURES, 2022, 1 (03):