EARLI: design of a laser wakefield accelerator for AWAKE

被引:0
|
作者
Minenna, D. F. G. [1 ]
Ballage, C. [2 ]
Bencini, V. [3 ]
Bethuys, S. [4 ]
Cros, B. [2 ]
Dickson, L. [2 ]
Doebert, S. [3 ]
Farmer, J. [5 ]
Gschwendtner, E. [3 ]
Jeandet, A. [4 ]
Marini, S. [1 ]
Massimo, F. [2 ]
Moulanier, I. [2 ]
Muggli, P. [5 ]
Nghiem, P. A. P. [1 ]
Ricaud, S. [4 ]
Simon-Boisson, C. [4 ]
Vasilovici, O. [2 ]
机构
[1] Univ Paris Saclay, CEA, IRFU, F-91191 Gif Sur Yvette, France
[2] Univ Paris Saclay, CNRS, LPGP, F-91405 Orsay, France
[3] CERN, Geneva, Switzerland
[4] THALES LAS France, F-78990 Elancourt, France
[5] Max Planck Inst Phys & Astrophys, Munich, Germany
来源
IPAC23 PROCEEDINGS | 2024年 / 2687卷
关键词
D O I
10.1088/1742-6596/2687/4/042007
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
Following the successful Run 1 experiment, the Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) Run2 experiment requires the design and implementation of a compact electron source. The "high-quality Electron Accelerator driven by a Reliable Laser wakefield for Industrial uses" (EARLI) project aims to design a stand-alone high-quality electron injector based on a laser wakefield accelerator (LWFA) as an alternative proposal to AWAKE's baseline design of an X-band electron gun. This project is currently in the design phase, including simulations and experimental tests. Exhaustive beam physics studies for conventional accelerators are applied to LWFA physics.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] The effects of laser polarization and wavelength on injection dynamics of a laser wakefield accelerator
    Ma, Y.
    Seipt, D.
    Hussein, A. E.
    Hakimi, S.
    Beier, N. F.
    Hansen, S. B.
    Hinojosa, J.
    Maksimchuk, A.
    Nees, J.
    Krushelnick, K.
    Thomas, A. G. R.
    Dollar, F.
    PHYSICS OF PLASMAS, 2021, 28 (06)
  • [42] Two-Color Hybrid Laser Wakefield and Direct Laser Accelerator
    Zhang, Xi
    Khudik, V.
    Bernstein, A.
    Downer, M.
    Shvets, G.
    ADVANCED ACCELERATOR CONCEPTS, 2017, 1812
  • [43] A high power, high density helicon discharge for the plasma wakefield accelerator experiment AWAKE
    Buttenschoen, B.
    Fahrenkamp, N.
    Grulke, O.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (07)
  • [44] Design of a cylindrical corrugated waveguide for a collinear wakefield accelerator
    Siy, A.
    Behdad, N.
    Booske, J.
    Waldschmidt, G.
    Zholents, A.
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2022, 25 (12)
  • [45] Self-mode-transition from laser wakefield accelerator to plasma wakefield accelerator of laser-driven plasma-based electron acceleration
    Pae, K. H.
    Choi, I. W.
    Lee, J.
    PHYSICS OF PLASMAS, 2010, 17 (12)
  • [46] Applications of laser wakefield accelerator-based light sources
    Albert, Felicie
    Thomas, Alec G. R.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2016, 58 (10)
  • [47] Combined plasma lens and rephasing stage for a laser wakefield accelerator
    Gustafsson, Cornelia
    Lofquist, Erik
    Svendsen, Kristoffer
    Angella, Andrea
    Persson, Anders
    Lundh, Olle
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [48] Ultrafast pulse radiolysis using a terawatt laser wakefield accelerator
    Oulianov, Dmitri A.
    Crowell, Robert A.
    Gosztola, David J.
    Shkrob, Ilya A.
    Korovyanko, Oleg J.
    Rey-de-Castro, Roberto C.
    JOURNAL OF APPLIED PHYSICS, 2007, 101 (05)
  • [49] Beam energy scaling of a stably operated laser wakefield accelerator
    Chen, S. H.
    Tai, L. C.
    Liu, C. S.
    Lin-Liu, Y. R.
    PHYSICS OF PLASMAS, 2010, 17 (06)
  • [50] Plasma wakefield generation and electron acceleration in a self-modulated laser wakefield accelerator experiment
    Ting, A
    Moore, CI
    Krushelnick, K
    Manka, C
    Esarey, E
    Sprangle, P
    Hubbard, R
    Burris, HR
    Fischer, R
    Baine, M
    PHYSICS OF PLASMAS, 1997, 4 (05) : 1889 - 1899