Convolutional neural network classification of cancer cytopathology images: taking breast cancer as an example

被引:8
|
作者
Xiao, MingXuan [1 ]
Li, Yufeng [2 ]
Yan, Xu [3 ]
Gao, Min [3 ]
Wang, Weimin [4 ]
机构
[1] SouthWest JiaoTong Univ, Chengdu, Peoples R China
[2] Univ Southampton, Southampton, Hants, England
[3] Trine Univ, Angola, IN USA
[4] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
关键词
(CNNs)Convolutional Neural Networks; Breast Pathological Image Detection; Breast Cancer Classification;
D O I
10.1145/3653946.3653968
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Breast cancer is a relatively common cancer among gynecological cancers. Its diagnosis often relies on the pathology of cells in the lesion. The pathological diagnosis of breast cancer not only requires professionals and time, but also sometimes involves subjective judgment. To address the challenges of dependence on pathologists expertise and the time-consuming nature of achieving accurate breast pathological image classification, this paper introduces an approach utilizing convolutional neural networks (CNNs) for the rapid categorization of pathological images, aiming to enhance the efficiency of breast pathological image detection. And the approach enables the rapid and automatic classification of pathological images into benign and malignant groups. The methodology involves utilizing a convolutional neural network (CNN) model leveraging the Inceptionv3 architecture and transfer learning algorithm for extracting features from pathological images. Utilizing a neural network with fully connected layers and employing the SoftMax function for image classification. Additionally, the concept of image partitioning is introduced to handle high-resolution images. To achieve the ultimate classification outcome, the classification probabilities of each image block are aggregated using three algorithms: summation, product, and maximum. Experimental validation was conducted on the BreaKHis public dataset, resulting in accuracy rates surpassing 0.92 across all four magnification coefficients (40X, 100X, 200X, and 400X). It demonstrates that the proposed method effectively enhances the accuracy in classifying pathological images of breast cancer.
引用
收藏
页码:145 / 149
页数:5
相关论文
共 50 条
  • [21] Convolutional Neural Network Based Breast Cancer Histopathology Image Classification
    Yamlome, Pascal
    Akwaboah, Akwasi Darkwa
    Marz, Aylin
    Deo, Makarand
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 1144 - 1147
  • [22] Imbalanced Histopathological Breast Cancer Image Classification with Convolutional Neural Network
    Reza, Md Shamim
    Ma, Jinwen
    PROCEEDINGS OF 2018 14TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2018, : 619 - 624
  • [23] Breast Cancer Histopathological Image Classification Utilizing Convolutional Neural Network
    Tuan Dinh Truong
    Hien Thi-Thu Pham
    7TH INTERNATIONAL CONFERENCE ON THE DEVELOPMENT OF BIOMEDICAL ENGINEERING IN VIETNAM (BME7): TRANSLATIONAL HEALTH SCIENCE AND TECHNOLOGY FOR DEVELOPING COUNTRIES, 2020, 69 : 531 - 536
  • [24] Classification of breast cancer cytological specimen using convolutional neural network
    Zejmo, Michal
    Kowal, Marek
    Korbicz, Jozef
    Monczak, Roman
    13TH EUROPEAN WORKSHOP ON ADVANCED CONTROL AND DIAGNOSIS (ACD 2016), 2017, 783
  • [25] Breast cancer pathological image classification based on a convolutional neural network
    Yu L.
    Xia Y.
    Yan Y.
    Wang P.
    Cao W.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2021, 42 (04): : 567 - 573
  • [26] Classification of Breast Cancer Based on Histology Images Using Convolutional Neural Networks
    Bardou, Dalal
    Zhang, Kun
    Ahmad, Sayed Mohammad
    IEEE ACCESS, 2018, 6 : 24680 - 24693
  • [27] Lung and Colon Cancer Classification of Histopathology Images Using Convolutional Neural Network
    Singh O.
    Kashyap K.L.
    Singh K.K.
    SN Computer Science, 5 (2)
  • [28] Convolutional Neural Network Models for Throat Cancer Classification Using Histopathological Images
    Kadirappa, Ravindranath
    Amaranageswarao, Gadipudi
    Deivalakshmi, S.
    DISTRIBUTED COMPUTING AND OPTIMIZATION TECHNIQUES, ICDCOT 2021, 2022, 903 : 263 - 271
  • [29] Automated Classification of Oral Cancer Histopathology images using Convolutional Neural Network
    Panigrahi, Santisudha
    Swarnkar, Tripti
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 1232 - 1234
  • [30] ADBNet: An Attention-Guided Deep Broad Convolutional Neural Network for the Classification of Breast Cancer Histopathology Images
    Rahman, Musfequa
    Deb, Kaushik
    Dhar, Pranab Kumar
    Shimamura, Tetsuya
    IEEE ACCESS, 2024, 12 : 133784 - 133809