Tokamak divertor plasma emulation with machine learning

被引:2
|
作者
Holt, G. K. [1 ]
Keats, A. [1 ]
Pamela, S. [2 ]
Kryjak, M. [3 ]
Agnello, A. [1 ]
Amorisco, N. C. [1 ]
Dudson, B. D. [4 ]
Smyrnakis, M. [1 ]
机构
[1] Scitech Daresbury, STFC Hartree Ctr, Warrington WA4 4AD, England
[2] United Kingdom Atom Energy Author, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[3] Univ York, York Plasma Inst, Dept Phys, York YO10 5DF, England
[4] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA
关键词
tokamak divertor; plasma fluid simulation database; MAST-Upgrade; machine learning; neural network;
D O I
10.1088/1741-4326/ad4f9e
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Future tokamak devices that aim to create conditions relevant to power plant operations must consider strategies for mitigating damage to plasma facing components in the divertor. One of the goals of MAST-U tokamak operations is to inform these considerations by researching advanced divertor configurations that aid stable plasma detachment. Machine design, scenario planning and detachment control would all greatly benefit from tools that enable rapid calculation of scenario-relevant quantities given some input parameters. This paper presents a method for generating large, simulated scrape-off layer data sets, which was applied to generate a data set of steady-state Hermes-3 simulations of the MAST-U tokamak. A machine learning model was constructed using a Bayesian approach to hyperparameter optimisation to predict diagnosable output quantities given control-relevant input features. The resulting best-performing model, which is based on a feedforward neural network, achieves high accuracy when predicting electron temperature at the divertor target and carbon impurity radiation front position and runs in around 1 ms in inference mode. Techniques for interpreting the predictions made by the model were applied, and a high-resolution parameter scan of upstream conditions was performed to demonstrate the utility of rapidly generating accurate predictions using the emulator. This work represents a step forward in the design of machine learning-driven emulators of tokamak exhaust simulation codes in operational modes relevant to divertor detachment control and plasma scenario design.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] The correlation of edge plasma current, electric field and divertor condition in tokamak
    Zhao, Xuele
    Sang, Chaofeng
    Wang, Yilin
    Liu, Daoyuan
    Zhang, Chen
    Wang, Dezhen
    Nuclear Materials and Energy, 2022, 33
  • [32] Effect of the gas puff location on the divertor plasma properties in COMPASS tokamak
    Dimitrova, M.
    Tomes, M.
    Popov, Tsv
    Dejarnac, R.
    Stockel, J.
    Adamek, J.
    Vasileva, E.
    Hron, M.
    Panek, R.
    21ST INTERNATIONAL SUMMER SCHOOL ON VACUUM, ELECTRON AND ION TECHNOLOGIES, 2020, 1492
  • [33] Modeling of tokamak divertor plasma for weakly collisional parallel electron transport
    Umansky, M. V.
    Dimits, A. M.
    Joseph, I.
    Omotani, J. T.
    Rognlien, T. D.
    JOURNAL OF NUCLEAR MATERIALS, 2015, 463 : 506 - 509
  • [34] Diagnosing transient plasma status: from solar atmosphere to tokamak divertor
    Giunta, A. S.
    Henderson, S.
    O'Mullane, M.
    Harrison, J.
    Doyle, J. G.
    Summers, H. P.
    JOURNAL OF INSTRUMENTATION, 2016, 11
  • [35] Time-dependent modeling of dust outburst into tokamak divertor plasma
    Smirnov, R. D.
    Krasheninnikov, S., I
    PHYSICS OF PLASMAS, 2020, 27 (08)
  • [36] Probe Device for Comprehensive Study of Plasma Interaction with Divertor for TRT Tokamak
    Airapetov, A. A.
    Begrambekov, L. B.
    Sadovskiy, Ya. A.
    PLASMA PHYSICS REPORTS, 2022, 48 (12) : 1404 - 1413
  • [37] Plasma wall interaction and its implication in an all tungsten divertor tokamak
    Neu, R.
    Balden, M.
    Bobkov, V.
    Dux, R.
    Gruber, O.
    Herrmann, A.
    Kallenbach, A.
    Kaufmann, M.
    Maggi, C. F.
    Maier, H.
    Mueller, H. W.
    Puetterich, T.
    Pugno, R.
    Rohde, V.
    Sips, A. C. C.
    Stober, J.
    Suttrop, W.
    Angioni, C.
    Atanasiu, C. V.
    Becker, W.
    Behler, K.
    Behringer, K.
    Bergmann, A.
    Bertoncelli, T.
    Bilato, R.
    Bottino, A.
    Brambilla, M.
    Braun, F.
    Buhler, A.
    Chankin, A.
    Conway, G.
    Coster, D. P.
    de Marne, P.
    Dietrich, S.
    Dimova, K.
    Drube, R.
    Eich, T.
    Engelhardt, K.
    Fahrbach, H-U
    Fantz, U.
    Fattorini, L.
    Fink, J.
    Fischer, R.
    Flaws, A.
    Franzen, P.
    Fuchs, J. C.
    Gal, K.
    Garcia-Munoz, M.
    Gemisic-Adamov, M.
    Giannone, L.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2007, 49 (12B) : B59 - B70
  • [38] The correlation of edge plasma current, electric field and divertor condition in tokamak
    Zhao, Xuele
    Sang, Chaofeng
    Wang, Yilin
    Liu, Daoyuan
    Zhang, Chen
    Wang, Dezhen
    NUCLEAR MATERIALS AND ENERGY, 2022, 33
  • [39] Divertor plasma conditions and their effect on carbon migration in the ASDEX upgrade tokamak
    Aho-Mantila, Leena
    VTT Publications, 2011, (773): : 1 - 76
  • [40] KINETIC-THEORY OF PLASMA SCRAPE-OFF IN A DIVERTOR TOKAMAK
    HINTON, FL
    HAZELTIN.RD
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (09): : 852 - 852