On the normally torsion-freeness of square-free monomial ideals

被引:0
|
作者
Nasernejad, Mehrdad [1 ]
Quinonez, Veronica Crispin [2 ]
Hochstaettler, Winfried [3 ]
机构
[1] Univ Artois, Lab Math Lens LML, UR 2462, F-62300 Lens, France
[2] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
[3] Fern Univ Hagen, Fak Math & Informat, D-58084 Hagen, Germany
关键词
Normally torsion-free monomial ideals; embedded associated primes; dominating ideals; trees; PATH IDEALS; PRIMES;
D O I
10.1142/S0219498825502834
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let I subset of R = K[x(1),..., x(n)] be a square-free monomial ideal, q be a prime monomial ideal in R, h be a square-free monomial in R with supp(h) boolean AND (supp(q) boolean OR supp(I)) = empty set, and L := I boolean AND (q, h). In this paper, we first focus on the associated primes of powers of L and explore the normally torsion-freeness of L. We also give an application on a combinatorial result. Next, we study when a square-free monomial ideal is minimally not normally torsion-free. Particularly, we introduce a class of square-free monomial ideals, which are minimally not normally torsion-free.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Results on the regularity of square-free monomial ideals (vol 56, pg 21, 2014)
    Huy Tai Ha
    Woodroofe, Russ
    ADVANCES IN APPLIED MATHEMATICS, 2017, 86 : 175 - 177
  • [32] BLOWUP ALGEBRAS OF SQUARE-FREE MONOMIAL IDEALS AND SOME LINKS TO COMBINATORIAL OPTIMIZATION PROBLEMS
    Gitler, Isidoro
    Reyes, Enrique
    Villarreal, Rafael H.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (01) : 71 - 102
  • [33] NORMAL FLATNESS AND NORMAL TORSION-FREENESS
    ROBBIANO, L
    VALLA, G
    JOURNAL OF ALGEBRA, 1976, 43 (02) : 552 - 560
  • [34] DAGGER COMPLETIONS AND BORNOLOGICAL TORSION-FREENESS
    Meyer, Ralf
    Mukherjee, Devarshi
    QUARTERLY JOURNAL OF MATHEMATICS, 2019, 70 (03): : 1135 - 1156
  • [35] Counting square-free monomial Cremona maps
    Bárbara Costa
    Thiago Dias
    Rodrigo Gondim
    Ricardo Machado
    São Paulo Journal of Mathematical Sciences, 2023, 17 : 76 - 101
  • [36] Counting square-free monomial Cremona maps
    Costa, Barbara
    Dias, Thiago
    Gondim, Rodrigo
    Machado, Ricardo
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (01): : 76 - 101
  • [37] TORSION-FREENESS FOR RINGS WITH ZERO-DIVISORS
    Dauns, John
    Fuchs, Laszlo
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2004, 3 (03) : 221 - 237
  • [38] On torsion-freeness of Kähler differential sheaves
    Das, Nilkantha
    Roy, Sumit
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (09) : 2982 - 2990
  • [39] On vanishing and torsion-freeness results for adjoint pairs
    Meng, Fanjun
    MATHEMATICAL RESEARCH LETTERS, 2023, 30 (04) : 1233 - 1252
  • [40] The Hochschild cohomology of square-free monomial complete intersections
    Tran, Nghia T. H.
    Skoldberg, Emil
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (08) : 3040 - 3055