Synthesis and characterization of coprecipitated layered NCM oxide as cathode for sodium-ion batteries: Kinetics and hydrodynamics studies

被引:4
|
作者
Mhaske, Vaishnavi P. [1 ]
Yadav, Manishkumar D. [1 ]
机构
[1] Inst Chem Technol, Dept Chem Engn, Mumbai 19, India
关键词
LTMO; Co-precipitation; Hydrodynamic; Precipitating agent; Scale-up; PERFORMANCE; OPTIMIZATION;
D O I
10.1016/j.ces.2024.120177
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Interest in the development of high-performance sodium-ion batteries (SIBs) as a sustainable alternative to lithium-ion batteries (LIBs) for emerging energy storage systems has motivated to delve into a novel approach for the synthesis of layered transition metal oxide (LTMO) type cathode for SIBs batteries. In this study, we introduce novel chemical synthesis method that diverges from traditional methodologies reported till date. Rather than relying on sulfur, nitrate, or acetate metal precursor salts, we employ metal carbonate salt coupled with oxalic acid as a chelating agent, and sodium carbonate as a precipitating agent. This novel chemistry enhances the microstructure of the cathode material inherited from its precursor exhibiting spherical morphology, influence on the electrochemical properties, bestowing the material with high specific capacity, extended cycle life, and an elevated charge-discharge rate. The primary focus of this work centers on a comprehensive investigation of the hydrodynamic and kinetics aspects of the co-precipitation reaction, guided by the principles of chemical engineering. The effects of key parameters such as impeller speed, impeller type, and scale-up effects on the coprecipitation process have been systematically explored. This research introduces insights into optimizing reaction conditions such as pH, reaction temperature, metal precursor salt ratio, precipitating agent, through rigorous experimentation and characterization reports. The notable effect of precipitating agent on morphology has been demonstrated by electron microscopy images. The kinetics study shows the activation energy of 8.9 kJ mol-1 depicts the reaction is controlled by mass transfer resistance and to overcome this effect, impeller type and speed plays significant role and experimentation results shows the axial mixing pattern created by pitched blade impeller is effective to improvise electrochemical properties. The synthesized cathode material exhibits remarkable electrochemical properties, including tap density of approximately 1.3 g cc- 1 with reversible capacity of 215 mAh g-1, along with excellent cyclic stability (90 %) over 60 cycles. Furthermore, it shows the high energy density up to 1300 Wh/L and a rapid charge-discharge rate. These findings contribute to the advancement of SIBs technology and offer promising prospects for future researchers to efficient development of highperformance energy storage solutions.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Research progress on P2-type layered oxide cathode materials for sodium-ion batteries
    Wu, Chen
    Xu, Yuxing
    Song, Jiechen
    Hou, Ying
    Jiang, Shiyang
    He, Rui
    Wei, Aijia
    Tan, Qiangqiang
    Chemical Engineering Journal, 1600, 500
  • [42] Synthesis of copper hexacyanoferrate nanoflake as a cathode for sodium-ion batteries
    Ma, Xiao-Hang
    Jia, Wei
    Wang, Jiao
    Zhou, Jia-Hao
    Wu, Yao-Dong
    Wei, Yi-Yong
    Zi, Zhen-Fa
    Da, Jian-Ming
    CERAMICS INTERNATIONAL, 2019, 45 (01) : 740 - 746
  • [43] Synthesis and Electrochemical Performance of Acetylene Gas Decomposed Fe-Based Layered Oxide Cathode Material for Sodium-Ion Batteries
    Bhardwaj, Abhishek
    Panwar, A. K.
    JOURNAL OF ENGINEERING RESEARCH, 2022, 10 : 234 - 241
  • [44] A High-Capacity, Low-Cost Layered Sodium Manganese Oxide Material as Cathode for Sodium-Ion Batteries
    Guo, Shaohua
    Yu, Haijun
    Jian, Zelang
    Liu, Pan
    Zhu, Yanbei
    Guo, Xianwei
    Chen, Mingwei
    Ishida, Masayoshi
    Zhou, Haoshen
    CHEMSUSCHEM, 2014, 7 (08) : 2115 - 2119
  • [45] Interfacial engineering of the layered oxide cathode materials for sodium-ion battery
    Zhao, Quanqing
    Wang, Ruru
    Gao, Ming
    Butt, Faheem K.
    Jia, Jianfeng
    Wu, Haishun
    Zhu, Youqi
    NANO RESEARCH, 2024, 17 (03) : 1441 - 1464
  • [46] Interfacial engineering of the layered oxide cathode materials for sodium-ion battery
    Quanqing Zhao
    Ruru Wang
    Ming Gao
    Faheem K. Butt
    Jianfeng Jia
    Haishun Wu
    Youqi Zhu
    Nano Research, 2024, 17 : 1441 - 1464
  • [47] Layered-tunnel structured cathode for high performance sodium-ion batteries
    Zan, Feng
    Yao, Yao
    Savilov, Serguei, V
    Suslova, Eugenia
    Xia, Hui
    FUNCTIONAL MATERIALS LETTERS, 2020, 13 (04)
  • [48] Electronic Structure Engineering of Honeycomb Layered Cathode Material for Sodium-Ion Batteries
    Voronina, Natalia
    Kim, Hee Jae
    Konarov, Aishuak
    Yaqoob, Najma
    Lee, Kug-Seung
    Kaghazchi, Payam
    Guillon, Olivier
    Myung, Seung-Taek
    ADVANCED ENERGY MATERIALS, 2021, 11 (14)
  • [49] Structure-property relationship in layered cathode materials for sodium-ion batteries
    Lee, Eungje
    Gutierrez, Arturo
    Slater, Michael
    Lu, Jun
    Kim, Youngsik
    Johnson, Christopher
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [50] Improvement of cycle life for layered oxide cathodes in sodium-ion batteries
    Yang, Huan
    Wang, Dong
    Liu, Yalan
    Liu, Yihua
    Zhong, Benhe
    Song, Yang
    Kong, Qingquan
    Wu, Zhenguo
    Guo, Xiaodong
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (05) : 1756 - 1780