Improving Sequential Latent Variable Models with Autoregressive Flows

被引:0
|
作者
Marino, Joseph [1 ]
Chen, Lei [2 ]
He, Jiawei [2 ]
Mandt, Stephan [3 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] Simon Fraser Univ, Burnaby, BC, Canada
[3] Univ Calif Irvine, Irvine, CA 92717 USA
来源
SYMPOSIUM ON ADVANCES IN APPROXIMATE BAYESIAN INFERENCE, VOL 118 | 2019年 / 118卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an approach for sequence modeling based on autoregressive normalizing flows. Each autoregressive transform, acting across time, serves as a moving reference frame for modeling higher-level dynamics. This technique provides a simple, general-purpose method for improving sequence modeling, with connections to existing and classical techniques. We demonstrate the proposed approach both with standalone models, as well as a part of larger sequential latent variable models. Results are presented on three benchmark video datasets, where flow-based dynamics improve log-likelihood performance over baseline models.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Sequential Adaptive Estimators in Nonparametric Autoregressive Models
    Arkoun, Ouerdia
    SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2011, 30 (02): : 229 - 247
  • [22] Sequential robust estimation for nonparametric autoregressive models
    Arkoun, Ouerdia
    Pergamenchtchikov, Serguei
    SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2016, 35 (04): : 489 - 515
  • [23] Dimension in latent variable models
    Levine, MV
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2003, 47 (04) : 450 - 466
  • [24] Discrete Latent Variable Models
    Bartolucci, Francesco
    Pandolfi, Silvia
    Pennoni, Fulvia
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, 2022, 9 : 425 - 452
  • [25] Tensors and Latent Variable Models
    Ishteva, Mariya
    LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION, LVA/ICA 2015, 2015, 9237 : 49 - 55
  • [26] CONTINUITY OF LATENT VARIABLE MODELS
    WILLEMS, JC
    NIEUWENHUIS, JW
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (05) : 528 - 538
  • [27] On Estimation in Latent Variable Models
    Fang, Guanhua
    Li, Ping
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [28] Variable importance in latent variable regression models
    Kvalheim, Olav M.
    Arneberg, Reidar
    Bleie, Olav
    Rajalahti, Tarja
    Smilde, Age K.
    Westerhuis, Johan A.
    JOURNAL OF CHEMOMETRICS, 2014, 28 (08) : 615 - 622
  • [29] Gaussian Latent Variable Models for Variable Selection
    Jiang, Xiubao
    You, Xinge
    Mou, Yi
    Yu, Shujian
    Zeng, Wu
    2014 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2014, : 353 - 357
  • [30] A Recurrent Latent Variable Model for Sequential Data
    Chung, Junyoung
    Kastner, Kyle
    Dinh, Laurent
    Goel, Kratarth
    Courville, Aaron
    Bengio, Yoshua
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28