Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment

被引:1
|
作者
Liu, Jisheng [1 ,2 ,3 ]
Chen, Junli [4 ]
Zhang, Xifeng [1 ,2 ,3 ]
Wu, Yin [1 ,2 ,3 ]
Qi, Xin [1 ,2 ,3 ]
Wang, Jie [5 ]
Gao, Xiang [1 ,2 ,3 ]
机构
[1] Sichuan Univ, West China Hosp, Dept Neurosurg, West China Med Sch, Chengdu 610041, Peoples R China
[2] Sichuan Univ, State Key Lab Biotherapy, West China Hosp, West China Med Sch,Inst Neurosurg, Chengdu 610041, Peoples R China
[3] Sichuan Univ, Canc Ctr, West China Hosp, West China Med Sch, Chengdu 610041, Peoples R China
[4] Sichuan Univ, West China Sch Basic Med Sci & Forens Med, Chengdu 610041, Peoples R China
[5] Sichuan Univ, West China Hosp, Dept Hematol, Chengdu 610041, Peoples R China
基金
中国国家自然科学基金;
关键词
FLT3-ITD; Acute myeloid leukemia; AML; Red blood cell membrane; Biomimetics; INTERNAL TANDEM DUPLICATION; KINASE INHIBITOR; CONSTITUTIVE ACTIVATION; CHEMOTHERAPY; GILTERITINIB; MIDOSTAURIN; SORAFENIB; MUTATIONS; AML;
D O I
10.1016/j.cclet.2024.109779
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
FMS-like tyrosine kinase 3 (FLT3) is a viable and important therapeutic target for acute myeloid leukemia (AML). FLT3 internal tandem duplication (FLT3-ITD) mutations have been identified in approximately 30% of AML patients, and are associated with unfavorable prognosis, higher risk of relapse, drug resistance, and poor clinical outcome. Even FLT3 inhibitors have demonstrated promising efficacy, they cannot cure AML or even significantly extend the lives of patients with FLT3-ITD mutations. This is partly because of poor water solubility, insufficient membrane penetration and short half-life of small molecule inhibitors. Besides, the presence of enzymes like CYP3A4 in bone marrow accelerate the elimination and metabolism of FLT3 inhibitors, resulting in low plasma concentrations and side effects. Here we report the erythrocyte membrane-camouflaged FLT3 inhibitor nanoparticles to enhance FLT3-ITD AML treatment. Briefly, we physically coextruded red blood cell (RBC) membrane vesicles with nanoparticles derived from FLT3 inhibitor F30 to obtain F30 @RBC-M, which exhibited comparable potent FLT3-ITD inhibitory effects compared to free F30 in vitro , while displaying a higher potent antitumor efficacy in xenograft models due to the prolonged circulation properties. Furthermore, administration of F30 @RBC-M significantly extended the survival of mice in a transplanted mouse model than F30 free drug. These findings suggest that RBC membrane-coated nanoparticles derived from FLT3 inhibitors hold promise as a tool to enhance the therapeutic efficacy to treat FLT3-ITD AML. (c) 2024 Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] High FLT3 mRNA expression without FLT3-ITD in infants with acute myeloid leukernia
    Shimada, Akira
    Yamada, Miho
    Yamashita, Yuka
    Yokozawa, Toshiya
    Tomizawa, Daisuke
    Kinoshita, Akitoshi
    Taga, Takashi
    Tawa, Akio
    Taki, Tomohiko
    Hayashi, Yasuhide
    Fujimoto, Junichiro
    Horibe, Keizo
    Adachi, Souichi
    CANCER RESEARCH, 2012, 72
  • [22] Autophagy and inflammasome activation are associated with poor response to FLT3 inhibitors in patients with FLT3-ITD acute myeloid leukemia
    de Macedo, Brunno Gilberto Santos
    de Melo, Manuela Albuquerque
    Pereira-Martins, Diego Antonio
    Machado-Neto, Joao Agostinho
    Traina, Fabiola
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [23] Effects of PP2A-activating drugs on FLT3 inhibitor resistance mediated by diverse mechanisms in acute myeloid leukemia with FLT3-ITD
    Ali, Moaath Mustafa
    Chatterjee, Aditi
    Lee, Jonelle K.
    Scarpa, Mario
    Baer, Maria R.
    CANCER RESEARCH, 2023, 83 (07)
  • [24] Evaluation of tyrosine kinase inhibitor treatment in patients with FLT3-ITD positive acute myeloid leukemia
    Fleischmann, M.
    Schrenk, K. G.
    Schnetzke, U.
    Hilgendorf, I
    Hochhaus, A.
    Scholl, S.
    ONCOLOGY RESEARCH AND TREATMENT, 2016, 39 : 50 - 51
  • [25] Outcomes of pediatric acute myeloid leukemia patients with FLT3-ITD mutations in the pre-FLT3 inhibitor era
    Choi, Sujin
    Kim, Bo Kyung
    Ahn, Hong Yul
    Hong, Kyung Taek
    Choi, Jung Yoon
    Shin, Hee Young
    Kang, Hyoung Jin
    BLOOD RESEARCH, 2020, 55 (04) : 217 - 224
  • [26] Partnering with PARP inhibitors in acute myeloid leukemia with FLT3-ITD
    Dellomo, Anna J.
    Baer, Maria R.
    Rassool, Feyruz V.
    CANCER LETTERS, 2019, 454 : 171 - 178
  • [27] Impact of FLT3-ITD length on prognosis of acute myeloid leukemia
    Liu, Song-Bai
    Dong, Hao-Jie
    Bao, Xie-Bing
    Qiu, Qiao-Cheng
    Li, Hong-Zhi
    Shen, Hong-Jie
    Ding, Zi-Xuan
    Wang, Chao
    Chu, Xiao-Ling
    Yu, Jing-Qiu
    Tao, Tao
    Li, Zheng
    Tang, Xiao-Wen
    Chen, Su-Ning
    Wu, De-Pei
    Li, Ling
    Xue, Sheng-Li
    HAEMATOLOGICA, 2019, 104 (01) : E9 - E12
  • [28] Selectively targeting FLT3-ITD mutants over FLT3-wt by a novel inhibitor for acute myeloid leukemia
    Wang, Aoli
    Hu, Chen
    Chen, Cheng
    Liang, Xiaofei
    Wang, Beilei
    Zou, Fengming
    Yu, Kailin
    Li, Feng
    Liu, Qingwang
    Qi, Ziping
    Wang, Junjie
    Wang, Wenliang
    Wang, Li
    Weisberg, Ellen L.
    Wang, Wenchao
    Li, Lili
    Ge, Jian
    Xia, Ruixiang
    Liu, Jing
    Liu, Qingsong
    HAEMATOLOGICA, 2021, 106 (02) : 605 - 609
  • [29] Arsenic trioxide induces autophagic degradation of the FLT3-ITD mutated protein in FLT3-ITD acute myeloid leukemia cells
    Liu, Xiao-Jian
    Wang, Li-Na
    Zhang, Zu-Han
    Liang, Cong
    Li, Yu
    Luo, Jie-Si
    Peng, Chun-Jin
    Zhang, Xiao-Li
    Ke, Zhi-Yong
    Huang, Li-Bin
    Tang, Yan-Lai
    Luo, Xue-Qun
    JOURNAL OF CANCER, 2020, 11 (12): : 3476 - 3482
  • [30] Gilteritinib as treatment for extra-medullary relapse of FLT3-ITD acute myeloid leukemia FLT3-ITD, after allogeneic haematopoietic stem cell transplantation
    Iannotta, R.
    Celentano, M.
    Marotta, S.
    Pedata, C. M.
    Riccardi, C.
    Migliaccio, I.
    Viola, A.
    Muggianu, S. M.
    Falco, C.
    Bovenzi, D.
    Ferrara, F.
    Picardi, A.
    LEUKEMIA RESEARCH REPORTS, 2022, 18