Deep Digging into the Generalization of Self-Supervised Monocular Depth Estimation

被引:0
|
作者
Bae, Jinwoo [1 ]
Moon, Sungho [1 ]
Im, Sunghoon [1 ]
机构
[1] DGIST, Dept Elect Engn & Comp Sci, Daegu, South Korea
基金
新加坡国家研究基金会;
关键词
VISION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Self-supervised monocular depth estimation has been widely studied recently. Most of the work has focused on improving performance on benchmark datasets, such as KITTI, but has offered a few experiments on generalization performance. In this paper, we investigate the backbone net-works (e.g. CNNs, Transformers, and CNN-Transformer hybrid models) toward the generalization of monocular depth estimation. We first evaluate state-of-the-art models on diverse public datasets, which have never been seen during the network training. Next, we investigate the effects of texture-biased and shape-biased representations using the various texture-shifted datasets that we generated. We observe that Transformers exhibit a strong shape bias and CNNs do a strong texture-bias. We also find that shape-biased models show better generalization performance for monocular depth estimation compared to texture-biased models. Based on these observations, we newly design a CNN-Transformer hybrid network with a multi-level adaptive feature fusion module, called MonoFormer. The design intuition behind MonoFormer is to increase shape bias by employing Transformers while compensating for the weak locality bias of Transformers by adaptively fusing multi-level representations. Extensive experiments show that the proposed method achieves state-of-the-art performance with various public datasets. Our method also shows the best generalization ability among the competitive methods.
引用
收藏
页码:187 / 196
页数:10
相关论文
共 50 条
  • [41] Constant Velocity Constraints for Self-Supervised Monocular Depth Estimation
    Zhou, Hang
    Greenwood, David
    Taylor, Sarah
    Gong, Han
    CVMP 2020: THE 17TH ACM SIGGRAPH EUROPEAN CONFERENCE ON VISUAL MEDIA PRODUCTION, 2020,
  • [42] Transferring knowledge from monocular completion for self-supervised monocular depth estimation
    Sun, Lin
    Li, Yi
    Liu, Bingzheng
    Xu, Liying
    Zhang, Zhe
    Zhu, Jie
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (29) : 42485 - 42495
  • [43] Transferring knowledge from monocular completion for self-supervised monocular depth estimation
    Lin Sun
    Yi Li
    Bingzheng Liu
    Liying Xu
    Zhe Zhang
    Jie Zhu
    Multimedia Tools and Applications, 2022, 81 : 42485 - 42495
  • [44] Self-Supervised Monocular Depth Hints
    Watson, Jamie
    Firman, Michael
    Brostow, Gabriel J.
    Turmukhambetov, Daniyar
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 2162 - 2171
  • [45] Self-Supervised Monocular Depth Underwater
    Amitai, Shlomi
    Klein, Itzik
    Treibitz, Tali
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 1098 - 1104
  • [46] RA-Depth: Resolution Adaptive Self-supervised Monocular Depth Estimation
    He, Mu
    Hui, Le
    Bian, Yikai
    Ren, Jian
    Xie, Jin
    Yang, Jian
    COMPUTER VISION - ECCV 2022, PT XXVII, 2022, 13687 : 565 - 581
  • [47] Adv-Depth: Self-Supervised Monocular Depth Estimation With an Adversarial Loss
    Li, Kunhong
    Fu, Zhiheng
    Wang, Hanyun
    Chen, Zonghao
    Guo, Yulan
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 638 - 642
  • [48] HR-Depth: High Resolution Self-Supervised Monocular Depth Estimation
    Lyu, Xiaoyang
    Liu, Liang
    Wang, Mengmeng
    Kong, Xin
    Liu, Lina
    Liu, Yong
    Chen, Xinxin
    Yuan, Yi
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 2294 - 2301
  • [49] SENSE: Self-Evolving Learning for Self-Supervised Monocular Depth Estimation
    Li, Guanbin
    Huang, Ricong
    Li, Haofeng
    You, Zunzhi
    Chen, Weikai
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 439 - 450
  • [50] Self-distilled Feature Aggregation for Self-supervised Monocular Depth Estimation
    Zhou, Zhengming
    Dong, Qiulei
    COMPUTER VISION - ECCV 2022, PT I, 2022, 13661 : 709 - 726