Deep Digging into the Generalization of Self-Supervised Monocular Depth Estimation

被引:0
|
作者
Bae, Jinwoo [1 ]
Moon, Sungho [1 ]
Im, Sunghoon [1 ]
机构
[1] DGIST, Dept Elect Engn & Comp Sci, Daegu, South Korea
基金
新加坡国家研究基金会;
关键词
VISION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Self-supervised monocular depth estimation has been widely studied recently. Most of the work has focused on improving performance on benchmark datasets, such as KITTI, but has offered a few experiments on generalization performance. In this paper, we investigate the backbone net-works (e.g. CNNs, Transformers, and CNN-Transformer hybrid models) toward the generalization of monocular depth estimation. We first evaluate state-of-the-art models on diverse public datasets, which have never been seen during the network training. Next, we investigate the effects of texture-biased and shape-biased representations using the various texture-shifted datasets that we generated. We observe that Transformers exhibit a strong shape bias and CNNs do a strong texture-bias. We also find that shape-biased models show better generalization performance for monocular depth estimation compared to texture-biased models. Based on these observations, we newly design a CNN-Transformer hybrid network with a multi-level adaptive feature fusion module, called MonoFormer. The design intuition behind MonoFormer is to increase shape bias by employing Transformers while compensating for the weak locality bias of Transformers by adaptively fusing multi-level representations. Extensive experiments show that the proposed method achieves state-of-the-art performance with various public datasets. Our method also shows the best generalization ability among the competitive methods.
引用
收藏
页码:187 / 196
页数:10
相关论文
共 50 条
  • [1] Digging Into Self-Supervised Monocular Depth Estimation
    Godard, Clement
    Mac Aodha, Oisin
    Firman, Michael
    Brostow, Gabriel
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 3827 - 3837
  • [2] Self-Supervised Monocular Depth Estimation by Digging into Uncertainty Quantification
    Li, Yuan-Zhen
    Zheng, Sheng-Jie
    Tan, Zi-Xin
    Cao, Tuo
    Luo, Fei
    Xiao, Chun-Xia
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2023, 38 (03) : 510 - 525
  • [3] Self-Supervised Monocular Depth Estimation by Digging into Uncertainty Quantification
    Yuan-Zhen Li
    Sheng-Jie Zheng
    Zi-Xin Tan
    Tuo Cao
    Fei Luo
    Chun-Xia Xiao
    Journal of Computer Science and Technology, 2023, 38 : 510 - 525
  • [4] Self-Supervised Deep Monocular Depth Estimation With Ambiguity Boosting
    Bello, Juan Luis Gonzalez
    Kim, Munchurl
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9131 - 9149
  • [5] Self-supervised monocular depth estimation in fog
    Tao, Bo
    Hu, Jiaxin
    Jiang, Du
    Li, Gongfa
    Chen, Baojia
    Qian, Xinbo
    OPTICAL ENGINEERING, 2023, 62 (03)
  • [6] On the uncertainty of self-supervised monocular depth estimation
    Poggi, Matteo
    Aleotti, Filippo
    Tosi, Fabio
    Mattoccia, Stefano
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 3224 - 3234
  • [7] Revisiting Self-supervised Monocular Depth Estimation
    Kim, Ue-Hwan
    Lee, Gyeong-Min
    Kim, Jong-Hwan
    ROBOT INTELLIGENCE TECHNOLOGY AND APPLICATIONS 6, 2022, 429 : 336 - 350
  • [8] Semantically guided self-supervised monocular depth estimation
    Lu, Xiao
    Sun, Haoran
    Wang, Xiuling
    Zhang, Zhiguo
    Wang, Haixia
    IET IMAGE PROCESSING, 2022, 16 (05) : 1293 - 1304
  • [9] Self-supervised deep monocular visual odometry and depth estimation with observation variation
    Zhao, Wentao
    Wang, Yanbo
    Wang, Zehao
    Li, Rui
    Xiao, Peng
    Wang, Jingchuan
    Guo, Rui
    DISPLAYS, 2023, 80
  • [10] Self-supervised monocular depth estimation in dynamic scenes based on deep learning
    Cheng, Binbin
    Yu, Ying
    Zhang, Lei
    Wang, Ziquan
    Jiang, Zhipeng
    National Remote Sensing Bulletin, 2024, 28 (09) : 2170 - 2186