Fabrication of NiCo2O4@NiCo2S4 Core@Shell nanostructured arrays decorated over the rGO sheets for High-Performance asymmetric supercapacitor

被引:3
|
作者
Vijayakumar, N. [1 ]
Thirugnanasundar, A. [1 ]
机构
[1] Erode Arts & Sci Coll Autonomous, Dept Chem, Erode 638009, Tamilnadu, India
关键词
NiCo2O4@NiCo2S4; Reduced graphene oxide; Asymmetric supercapacitor; Pseudocapacitors; Energy storage devices; GRAPHENE-BASED MATERIALS; BINDER-FREE ELECTRODES; FOAM ELECTRODE; NICKEL FOAM; NANOSHEETS; MICROSPHERE; PROGRESS; ZNCO2O4; GROWTH;
D O I
10.1016/j.inoche.2024.112530
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Reliable and cost-effective energy storage systems can only be designed using electrode materials that exhibit high energy densities and consistency. In this work, NiCo2S4@NiCo2O4 core@shell nanoneedle-like nanostructures (NCS@NCO/rGO) are synthesized over the rGO sheet using a new and easy hydrothermal approach. Electrolyte transport and sulfur incorporation during charge-discharge reactions are both made easier by the core@shell nanostructured arrays' large active surface area. The ternary electrodes made of NCS@NCO/rGO have a rich mesoporous framework, a large surface area of 156.5 m(2)g(-1), and an ideal distribution of pore sizes centered at 8.1 nm. An impressive specific capacitance of 2011 Fg(-1) at 10 mV s(-1) demonstrates the exceptional performance of the NCS@NCO/rGO ternary electrode. The ternary electrodes made of NCS@NCO and rGO have been shown to have remarkable cyclic stability in reports, maintaining 91 % of their capacity after 10,000 cycles. With an impressive power density of 983 Wkg(-1) and an outstanding cycling durability of 98.8 % retention of the original capacitance after 10,000 cycles, the manufactured NCS@NCO/rGO//AC ACS displays a noticeable energy density of 68.5 Whkg(-1). The mesoporous structure is excellent for increasing the characteristics of supercapacitor electrodes, as these astounding results can attest.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] N-rGO/NiCo2O4 nanocomposite for high performance supercapacitor applications
    Vignesh, G.
    Devendran, P.
    Nallamuthu, N.
    Sudhahar, S.
    Kumar, M. Krishna
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (09)
  • [42] N-rGO/NiCo2O4 nanocomposite for high performance supercapacitor applications
    G. Vignesh
    P. Devendran
    N. Nallamuthu
    S. Sudhahar
    M. Krishna Kumar
    Journal of Materials Science: Materials in Electronics, 2023, 34
  • [43] Design and synthesis of NiCo2O4@Au@NiO sandwiched coaxial core–shell nanowire arrays on carbon fabric for high-performance supercapacitor
    Chao Pan
    Li Dong
    Journal of Materials Science: Materials in Electronics, 2024, 35
  • [44] Three-Dimensional NiCo2O4@MnMoO4 Core-Shell Nanoarrays for High-Performance Asymmetric Supercapacitors
    Yuan, Yuliang
    Wang, Weicheng
    Yang, Jie
    Tang, Haichao
    Ye, Zhizhen
    Zeng, Yujia
    Lu, Jianguo
    LANGMUIR, 2017, 33 (40) : 10446 - 10454
  • [45] NiCo2S4@PPy core-shell nanotube arrays on Ni foam for high-performance supercapacitors
    Meng, F. Y.
    Yuan, Y. F.
    Guo, S. Y.
    Xu, Y. X.
    MATERIALS TECHNOLOGY, 2017, 32 (13) : 815 - 822
  • [46] Rational construction of NiCo2O4@Fe2O3 core-shell nanowire arrays for high-performance supercapacitors
    Ke Zhang
    Ze Cen
    Fang Yang
    Kaibing Xu
    ProgressinNaturalScience:MaterialsInternational, 2021, 31 (01) : 19 - 24
  • [47] Rational construction of NiCo2O4@Fe2O3 core-shell nanowire arrays for high-performance supercapacitors
    Zhang, Ke
    Cen, Ze
    Yang, Fang
    Xu, Kaibing
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2021, 31 (01) : 19 - 24
  • [48] A hierarchical NiCo2S4 honeycomb/NiCo2S4 nanosheet core-shell structure for supercapacitor applications
    Beka, Lemu Girma
    Li, Xin
    Wang, Xiaoli
    Han, Chuanyu
    Liu, Weihua
    RSC ADVANCES, 2019, 9 (55) : 32338 - 32347
  • [49] Performance comparison of NiCo2O4 and NiCo2S4 formed on Ni foam for supercapacitor
    Lv Jinlong
    Liang Tongxiang
    Yang Meng
    Ken, Suzuki
    Hideo, Miura
    COMPOSITES PART B-ENGINEERING, 2017, 123 : 28 - 33
  • [50] Synthesis of NiCo2O4@MnO2 Core-Shell Arrays for High Performance Energy Storage
    Zhao, Rongda
    Dai, Jinqiu
    Wu, Fufa
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2020, 15 (02) : 171 - 178