Interactive fusion of local and global degradation representations for rapid estimation of lithium-ion battery state-of-health

被引:2
|
作者
Sun, Ziqiang
Fan, Guodong [1 ]
Liu, Yisheng
Zhou, Boru
Wang, Yansong
Chen, Shun
Zhang, Xi
机构
[1] Shanghai Jiao Tong Univ, Sch Mech Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Lithium-ion battery; State-of-health (soh); Interactive feature fusion; Convolutional neural network (cnn); Transformer; REMAINING USEFUL LIFE; CHARGE ESTIMATION; MODEL; PREDICTION; DIAGNOSIS; HYSTERESIS; REGRESSION; PHYSICS;
D O I
10.1016/j.est.2024.111832
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate estimation of lithium-ion battery state-of-health (SOH) is the basis for BMS to ensure the battery safety and prolong its lifespan along the long-term cycling operation. Regarding feature extraction for battery aging state analysis, traditional convolutional neural networks (CNNs) are advantageous in capturing local aging information, but they have deficiencies in capturing long sequence dependencies. On the other hand, Transformers exhibit superiority in capturing long sequence dependencies, while they inevitably suffer from detail loss in local aging information. This study proposes an end-to-end battery SOH rapid estimation algorithm using a concurrent structured fusion of convolutional operations and Transformer self-attention mechanism. In this paper, feature consistency between the CNN and Transformer is realized by applying an Interactive Feature Fusion Block (IFFB) which can effectively integrate and retain battery local and global aging representation. The proposed model relies only on short term charging segments to establish a mapping relationship from the global and local features to the SOH by capturing the dynamic features within and between operating variables. Two public battery datasets with different battery types and aging paths were adopted to validate the proposed model. Simulation results show that the proposed model's performance demonstrates the averaged Root Mean Square Error (RMSE) on LFP test batteries and LCO test batteries to be 0.1874 % and 0.2853 %, respectively.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] A comprehensive review of state-of-charge and state-of-health estimation for lithium-ion battery energy storage systems
    Tao, Junjie
    Wang, Shunli
    Cao, Wen
    Takyi-Aninakwa, Paul
    Fernandez, Carlos
    Guerrero, Josep M.
    IONICS, 2024, 30 (10) : 5903 - 5927
  • [32] State-of-health estimation of lithium-ion battery based on convolutional neural network considering health indicator extraction
    Mun T.-S.
    Han D.-H.
    Kwon S.-U.
    Baek J.-B.
    Kim J.-H.
    Transactions of the Korean Institute of Electrical Engineers, 2021, 70 (10): : 1467 - 1474
  • [33] Fusion estimation of lithium-ion battery state of charge and state of health considering the effect of temperature
    Wang, Chunyu
    Cui, Naxin
    Cui, Zhongrui
    Yuan, Haitao
    Zhang, Chenghui
    JOURNAL OF ENERGY STORAGE, 2022, 53
  • [34] Online State-of-Health Estimation for the Lithium-Ion Battery Based on An LSTM Neural Network with Attention Mechanism
    Zhang, Jiachang
    Hou, Jie
    Zhang, Zijian
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 1334 - 1339
  • [35] A Convolutional Neural Network for Estimation of Lithium-Ion Battery State-of-Health during Constant Current Operation
    Chen, Junran
    Manivanan, Manjula
    Duque, Josimar
    Kollmeyer, Phillip
    Panchal, Satyam
    Gross, Oliver
    Emadi, Ali
    2023 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE & EXPO, ITEC, 2023,
  • [36] State-of-health estimation of retired lithium-ion battery module aged at 1C-rate
    Sun, Huiqin
    Wen, Xiankui
    Liu, Wei
    Wang, Zhiqin
    Liao, Qiangqiang
    JOURNAL OF ENERGY STORAGE, 2022, 50
  • [37] Implementation of State-of-Charge and State-of-Health Estimation for Lithium-Ion Batteries
    Lin, Chang-Hua
    Wang, Chien-Ming
    Ho, Chien-Yeh
    PROCEEDINGS OF THE IECON 2016 - 42ND ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2016, : 4790 - 4795
  • [38] State-of-Charge Estimation with State-of-Health Calibration for Lithium-Ion Batteries
    Wu, Tsung-Hsi
    Moo, Chin-Sien
    ENERGIES, 2017, 10 (07):
  • [39] A comprehensively optimized lithium-ion battery state-of-health estimator based on Local Coulomb Counting Curve
    Huang, Huanyang
    Meng, Jinhao
    Wang, Yuhong
    Feng, Fei
    Cai, Lei
    Peng, Jichang
    Liu, Tianqi
    APPLIED ENERGY, 2022, 322
  • [40] Exploration of Imbalanced Regression in state-of-health estimation of Lithium-ion batteries
    Zhao, Zhibin
    Liu, Bingchen
    Wang, Fujin
    Zheng, Shiyu
    Yu, Qiuyu
    Zhai, Zhi
    Chen, Xuefeng
    JOURNAL OF ENERGY STORAGE, 2025, 105