Almost global smooth solutions of the 3D quasilinear Klein-Gordon equations on the product space R2 x T
被引:0
|
作者:
Li, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ, Dept Math, Nanjing 210093, Peoples R ChinaNanjing Univ, Dept Math, Nanjing 210093, Peoples R China
Li, Jun
[1
]
Tao, Fei
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ, Dept Math, Nanjing 210093, Peoples R ChinaNanjing Univ, Dept Math, Nanjing 210093, Peoples R China
Tao, Fei
[1
]
Yin, Huicheng
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
Nanjing Normal Univ, Math Inst, Nanjing 210023, Peoples R ChinaNanjing Univ, Dept Math, Nanjing 210093, Peoples R China
Yin, Huicheng
[2
,3
]
机构:
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
[3] Nanjing Normal Univ, Math Inst, Nanjing 210023, Peoples R China
quasilinear Klein-Gordon equation;
almost global solution;
Z-norm;
Littlewood-Paley decomposition;
space-time resonance method;
energy estimate;
BIRKHOFF NORMAL-FORM;
EXISTENCE;
TIME;
SCATTERING;
D O I:
10.1007/s11425-023-2219-1
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, for the 3D quadratic nonlinear Klein-Gordon equation on the product space R-2 x T, we focus on the lower bound of the lifespan of the smooth solution with slowly decaying initial data. When the size of initial data is bounded by epsilon(0) > 0, it is shown that a smooth solution exists up to the time e(epsilon 0/epsilon 02) with epsilon(0) being sufficiently small and c(0) > 0 being some suitable constant. Note that the solution of the corresponding 3D linear homogeneous Klein-Gordon equation on R-2 x T only admits the optimal time-decay rate (1 + t)(-1), from which we generally derive the lifespan of the nonlinear Klein-Gordon equation up to e(c0/epsilon 0) rather than the more precise e(epsilon 0/epsilon 02) here.
机构:
MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USAMIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
Yu, Xueying
Yue, Haitian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southern Calif, Dept Math, 3620 S Vermont Ave, Los Angeles, CA 90089 USAMIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
Yue, Haitian
Zhao, Zehua
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Dept Math, William E Kirwan Hall,4176 Campus Dr, College Pk, MD 20742 USAMIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA