Paired Electrochemical CO 2 Reduction and HCHO Oxidation for the CostEffective Production of Value-Added Chemicals

被引:5
|
作者
Lv, Xudong [1 ]
Shao, Tao [1 ]
Liu, Junyan [1 ]
Ye, Meng [1 ]
Liu, Shengwei [1 ]
机构
[1] Sun Yat sen Univ, Sch Environm Sci & Engn, Guangdong Prov Key Lab Environm Pollut Control & R, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
CO; 2; reduction; HCHO oxidation; Paired electrochemical system; Cu; MnO; CATALYTIC-OXIDATION; FORMALDEHYDE; WATER; COPPER; ACTIVATION; COVERAGE; INSIGHTS; REACTOR;
D O I
10.3866/PKU.WHXB202305028
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Due to rapid industrial development and human activities, CO 2 emissions have led to serious environmental/ecological problems and climate changes such as global warming. Due to this situation, achieving carbon neutrality has become an urgent mission to improve the future of mankind. The use of the electrocatalytic CO 2 reduction reaction (CO 2 RR) to produce higher -value fuels and chemicals is an effective strategy for reducing CO 2 emissions and easing the energy crisis. The water oxidation half -reaction (WOR), which occurs at the anode in a traditional CO 2 RR system, typically suffers from slow kinetics, a large overpotential, and high energy consumption. The organic pollutant formaldehyde (HCHO) is oxidized into industrial materials (such as formic acid) under neutral conditions, which is of great significance for the sustainable production of energy and lessening environmental pollution. In addition, the number of electron transfers involved and the required potential for the HCHO oxidation half -reaction (FOR) are smaller than those of WOR, suggesting that FOR could potentially replace WOR as a coupling reaction with CO 2 reduction. In this study, FOR at a MnO 2 /CP anode is introduced to produce a novel paired CO 2 RR/FOR system. The current density and generation rate of CO 2 RR products in this paired CO 2 RR/FOR system are generally larger than those of conventional CO 2 RR/WOR systems at the same applied potential. Moreover, in paired CO 2 RR/FOR systems, HCHO can be selectively converted into HCOOH at certain applied potentials. Nearly 90% of the HCHO can be selectively converted to HCOOH with a conversion efficiency of about 48% at a cell voltage of 3.5 V in a two -electrode paired CO 2 RR/FOR system. More significantly, under a different working current, the potentials required for FOR are systemically smaller than those for WOR. At -10 mA center dot cm -2 , the cell voltage of the paired CO 2 RR/FOR system can be reduced by 210 mV, and the required electric energy for the paired CO 2 RR/FOR system can be reduced by 45.13% compared with the sum of single CO 2 RR and FOR systems. Notably, when a commercial polysilicon solar cell is used as the power supply, improvements in the current density, the generation rate of CO 2 RR products, and the HCHO to HCOOH selectivity can be still achieved in the paired CO 2 RR/FOR system. The present work will inspire further studies for developing novel paired CO 2 RR systems for the cost-effective, simultaneous conversion of CO 2 and organic pollutants into valuable chemicals.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] CO2-involved Electrochemical C-N Coupling into Value-added Chemicals
    Wang Ruhan
    Jia Shunhan
    Wu Limin
    Sun Xiaofu
    Han Buxing
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2022, 43 (07):
  • [12] Recycling copper wire waste into active Cu-based catalysts for value-added chemicals production via CO2 electrochemical reduction
    Intarapong, Pisitpong
    Yongprapat, Sarayut
    Saelim, Rattanun
    Therdthianwong, Supaporn
    Nithitanakul, Manit
    Therdthianwong, Apichai
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2025, 145 : 773 - 782
  • [13] Bimetallic materials as catalysts for photocatalytic CO2 reduction to value-added chemicals: A review
    Tang, Kexin
    Zhang, Ziyi
    Zhou, Dongxu
    Xu, Jingwen
    Cui, Haopeng
    Li, Fei
    Zhang, Xiaodong
    Lei, Jianqiu
    Tang, Liang
    Liu, Ning
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 356
  • [14] Heterogeneous catalytic oxidation of lignin into value-added chemicals
    Das, Lalitendu
    Kolar, Praveen
    Sharma-Shivappa, Ratna
    BIOFUELS-UK, 2012, 3 (02): : 155 - 166
  • [15] Aerogels for sustainable CO2 electroreduction to value-added chemicals
    Yan, Shenglin
    Mahyoub, Samah A.
    Cui, Yanran
    Wang, Qiong
    Li, Zhenglong
    MATERIALS TODAY SUSTAINABILITY, 2024, 28
  • [16] Rational-Designed Principles for Electrochemical and Photoelectrochemical Upgrading of CO2 to Value-Added Chemicals
    Zhang, Wenjun
    Jin, Zhong
    Chen, Zupeng
    ADVANCED SCIENCE, 2022, 9 (09)
  • [17] An insight into the bioelectrochemical photoreduction of CO2 to value-added chemicals
    Gupta, Priyanka
    Noori, Mohammad Tabish
    Esteve Nunez, Abraham
    Verma, Nishith
    ISCIENCE, 2021, 24 (04)
  • [18] Catalytic conversion of CO2 into high value-added chemicals
    Guo, Xinwen
    Song, Chunshan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [19] Co-electrolysis toward value-added chemicals
    Chen, Lisong
    Shi, Jianlin
    SCIENCE CHINA-MATERIALS, 2022, 65 (01) : 1 - 9
  • [20] Catalytic Oxidation of Biorefinery Lignin to Value-added Chemicals to Support Sustainable Biofuel Production
    Ma, Ruoshui
    Xu, Yan
    Zhang, Xiao
    CHEMSUSCHEM, 2015, 8 (01) : 24 - 51