A Crank-Nicolson leap-frog scheme for the unsteady incompressible magnetohydrodynamics equations
被引:1
|
作者:
Si, Zhiyong
论文数: 0引用数: 0
h-index: 0
机构:
Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Peoples R ChinaHenan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Peoples R China
Si, Zhiyong
[1
]
Wang, Mingyi
论文数: 0引用数: 0
h-index: 0
机构:
Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Peoples R China
Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R ChinaHenan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Peoples R China
Wang, Mingyi
[1
,2
]
Wang, Yunxia
论文数: 0引用数: 0
h-index: 0
机构:
Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Peoples R ChinaHenan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Peoples R China
Wang, Yunxia
[1
]
机构:
[1] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
This paper presents a Crank-Nicolson leap-frog (CNLF) scheme for the unsteady incompressible magnetohydrodynamics (MHD) equations. The spatial discretization adopts the Galerkin finite element method (FEM), and the temporal discretization employs the CNLF method for linear terms and the semi -implicit method for nonlinear terms. The first step uses Stokes style's scheme, the second step employs the Crank-Nicolson extrapolation scheme, and others apply the CNLF scheme. We establish that the fully discrete scheme is stable and convergent when the time step is less than or equal to a positive constant. Firstly, we show the stability of the scheme by means of the mathematical induction method. Next, we focus on analyzing error estimates of the CNLF method, where the convergence order of the velocity and magnetic field reach second-order accuracy, and the pressure is the first-order convergence accuracy. Finally, the numerical examples demonstrate the optimal error estimates of the proposed algorithm.
机构:
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Feng, Xinlong
He, Yinnian
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Ctr Computat Geosci, Sch Math & Stat, Xian 710049, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China