Fiberglass as a Novel Building Material: A Life Cycle Assessment of a Pilot House

被引:2
|
作者
Bjanesoy, Stavroula [1 ]
Heinonen, Jukka [1 ]
Ogmundarson, Olafur [2 ]
Arnadottir, Arora [1 ]
Marteinsson, Bjoern [1 ]
机构
[1] Univ Iceland, Fac Civil & Environm Engn, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland
[2] Univ Iceland, Fac Food Sci & Nutr, Aragata 14, IS-102 Reykjavik, Iceland
来源
ARCHITECTURE-SWITZERLAND | 2022年 / 2卷 / 04期
关键词
fiberglass; life cycle assessment (LCA); alternative building materials; sustainable built environment; embodied emissions; hotspot analysis; uncertainty; RESIDENTIAL BUILDINGS; CONSTRUCTION SECTOR; ENERGY-CONSUMPTION; CARBON-DIOXIDE; LCA; EMISSIONS; UNCERTAINTY; PERFORMANCE; SELECTION; PHASE;
D O I
10.3390/architecture2040037
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Alternative building materials have the potential to reduce environmental pressure from buildings, though the use of these materials should be guided by an understanding of the embodied environmental impacts. Extensive research on embodied greenhouse gas emissions from buildings has been conducted, but other impacts are less frequently reported. Furthermore, uncertainty is rarely reported in building LCA studies. This paper provides a piece for filling those gaps by comprehensively reporting the embodied environmental impacts of a fiberglass house within the LCA framework, modeled in the OpenLCA software using the Ecoinvent 3.7.1 inventory database. The ReCiPe 2016 impact assessment method is used to report a wide range of environmental impacts. The global warming potential is calculated to be 311 kgCO2 eq/m2. Additionally, a hotspot analysis is included to identify areas that should be the focus for improvement, as well as an uncertainty analysis based on Monte Carlo. The embodied emissions are given context by a scenario analysis over a 50-year use phase in three different grid conditions and with two different energy efficiency levels. Based on the results of this study, it is determined that fiberglass does not provide a viable alternative to conventional building materials if the purpose is to reduce embodied emissions from buildings.
引用
收藏
页码:690 / 710
页数:21
相关论文
共 50 条
  • [41] Dynamic life cycle assessment modelling of a NZEB building
    Asdrubali, F.
    Baggio, P.
    Prada, A.
    Grazieschi, G.
    Guattari, C.
    ENERGY, 2020, 191
  • [42] Life Cycle Assessment (LCA) in building materials industry
    Vigovskaya, Alina
    Aleksandrova, Olga
    Bulgakov, Boris
    INTERNATIONAL SCIENCE CONFERENCE SPBWOSCE-2016 - SMART CITY, 2017, 106
  • [43] Comparison of different building shells - life cycle assessment
    Rixrath, Doris
    Wartha, Christian
    INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT, 2016, 12 (03) : 437 - 444
  • [44] Impact of building's lifesp on the life cycle assessment
    Stranska, Z.
    Struhala, K.
    LIFE-CYCLE OF STRUCTURAL SYSTEMS: DESIGN, ASSESSMENT, MAINTENANCE AND MANAGEMENT, 2015, : 1910 - 1916
  • [45] A Life Cycle Health Impact Assessment Model of the Building
    Kong, Xiangqin
    Li, Xiaodong
    Gao, Yuanxue
    PROCEEDINGS OF 2010 INTERNATIONAL CONFERENCE ON CONSTRUCTION AND REAL ESTATE MANAGEMENT, VOLS 1-3, 2010, : 634 - 637
  • [46] Life Cycle Assessment (LCA) of a LEED certified building
    Vigovskaya, Alina
    Aleksandrova, Olga
    Bulgakov, Boris
    XXI INTERNATIONAL SCIENTIFIC CONFERENCE ON ADVANCED IN CIVIL ENGINEERING CONSTRUCTION - THE FORMATION OF LIVING ENVIRONMENT (FORM 2018), 2018, 365
  • [47] A review of life cycle assessment method for building industry
    Abd Rashid, Ahmad Faiz
    Yusoff, Sumiani
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 45 : 244 - 248
  • [48] Building life cycle assessment tools developed in France
    Peuportier, B.
    Schalbart, P.
    LIFE-CYCLE ANALYSIS AND ASSESSMENT IN CIVIL ENGINEERING: TOWARDS AN INTEGRATED VISION, 2019, : 767 - 774
  • [49] Functional unit influence on building life cycle assessment
    de Simone Souza, Hugo Henrique
    de Abreu Evangelista, Patricia Pereira
    Medeiros, Diego Lima
    Alberti, Jaume
    Fullana-i-Palmer, Pere
    Boncz, Marc Arpad
    Kiperstok, Asher
    Goncalves, Jardel Pereira
    INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2021, 26 (03): : 435 - 454
  • [50] Application of Life Cycle Assessment for a residential building construction
    Pinky, L.
    Reddy, Sumanth M.
    Palaniappan, Sivakumar
    INTERNATIONAL SYMPOSIUM ON LIFE CYCLE ASSESSMENT AND CONSTRUCTION: CIVIL ENGINEERING AND BUILDINGS, 2012, 86 : 213 - 222